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INTRODUCTION 

Matrix methods are used extensively in the analysis and 

design of aircraft structures.  Although methods have been 

developed for both isothermal and thermal analyses, experimental 

verification of these methods for thin-wall structures is not 

available.  The purpose of the investigation described in this 

report was: 

1. To design and test on integrally stiffened rectangular 

shear panel (Figure 1), 

2. To develop analytical procedures for shear panels 

subjected to thermo mechanical loading, and 

3. To compare the analytical and experimental results to 

evaluate the accuracy of the analysis methods. 

The panel has been designed and tested under mechanical 

loading.  There is good agreement between the analytical and 

experimental results.  It is also shown that any of the matrix 

methods of structural analysis investigated have the same order 

of accuracy when they are applied to the same mathematical model. 

The body of the report presents a summary description of 

the methods of analysis which were investigated, the design of 

the test panel, the experimental program, and the analytical 

and experimental results.  The details of the analysis methods 

and the digital computer programs developed to implement the 

use of these methods on the test panel are given in the appendices 

The thermal investigation has not been completed.  The 

progress on the various phases of this investigation is presented 

in the appropriate sections of the body of the report.  Appendix 

D presents the significant analytical results to date.  This 

investigation is being continued as a thesis project by Mr. 

R.G. Merritt. 
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the analytical results which are compared with the experimental 

data.  This program does not at present include provisions for 

a thermal analysis. 

Both the force analysis and the displacement were performed 

with the Force/Displacement Program described in Appendix B. 

It is also shown in this appendix that not only do the force 

and displacement methods yield essentially identical results, 

but these results agree with those given by the direct stiffness 

method.  This excellent agreement is, of course, directly related 

to the fact that identical mathematical models of the test panel 

were used for all three analyses.  This means that the accuracy 

of the results of a matrix structural analysis depend only on 

the accuracy of the mathematical model and not on the method 

of analysis.  In fact, Przemieniecki (Reference 6) suggests 

that if the substructure method is used, different parts of a 

structure may best be analyzed using different methods.  A 

force method for calculating the displacements and internal 

forces due to initial strains is given in Appendix C.  This 

will be expanded to include the displacement method for the 

thermal analysis. 

TEST PANEL 

The test panel is of monolithic construction and is 

symmetrical with respect to the plane of the web.  Monolithic 

construction was selected because it eliminates both joint 

friction and joint thermal resistance; neither of which can 

be accurately accounted for in the analyses.  Although most 

actual thin-wall structures are not symmetrical about the 

web plane, the analysis methods assume such symmetry.  Therefore, 

this construction is ideally suited for obtaining experimental 

data for comparison with Llie cuidiyticai results. 

The geometiy of the test panel was dictated primarily by 

the results on the heat transfer study.  Mr. D.E. Hull conducted 

this study and presented a paper on the results as a partial 

requirement for his undergraduate degree.  Mr. Hull's report 

is given in Appendix D of this report.  The purpose of this 

study was to obtain a geometry that would have nearly constant 
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temperatures over the. area of each stringer and over the 

length of each panel and, at the same time, a relatively 

large difference in temperature between the outboard stringer 

and the centerline of the panel.  The geometry selected 

satisfies these requirements. 

The only geometric considerations which influenced the 

design for mechanical loading were the overall length of the 

panel and the lug design.  The panel length was limited to 

approximately twenty-four inches by the open height of the 

testing machine.  The lugs were designed for a limit load of 

13,000 pounds.  However, the applied loads were limited to 

approximately 7,500 pounds, giving a factor of safety of 2.4. 

The material selected for the test panel was 6061-T6 

aluminum alloy plate.  Aluminum alloy tool and jig plate was 

investigated and found to have not only low physical properties, 

but also a nonlinear stress-strain curve. 

The panel was machined in the Wichita State University 

Engineering Machine Shop.  The largest available mill was not 

large enough to allow milling one entire side without moving 

the pane].  It was also necessary to fill the panels with 

water during the final cuts on the web to prevent thermal buck- 

ling.  However, the desired thickness of the web was maintained 

within a tolerance of plus 0.0015- and minus 0.0005-inches, 

and the overall thickness was within plus 0.001- and minus 

0.000-inches of the values specified in Figure 1. 

TEST FIXTURES 

The mechanical loading was performed in a 160,000 pound 

Tinus-Olsen Universal Testing Machine.  The test panel is 

shown mounted in this machine in Figure 2.  During the preliminary 

tests, it was discovered that a constant load could not be 

maintained with the loading system of the testing machine.  It 

was then necessary to design a seperate loading system for 

the final testö.  Two Blackhawk hydraulic cylinders with a total 

capacity of 28,000 pounds were mounted on the upper crosshead of 

the testing machine (Figure 3).  A linkage was designed to 

transmit the load from the hydraulic cylinders, through the 



opening in the crosshead, to the whiffle-tree system.  The 

load was applied and maintained with a hand-operated hydraulic 

pump, 

The whiffle-tree systems are both shown in Figure 2 and 

the upper system is also shown in Figure 3.  The upper system 

was designed to apply equal loads at all four of the lugs along 

the top of the panel.  Its compact design was necessary because 

of the limited vertical clearance of the testing machine.  Loads 

are applied only at the inboard stringers along the bottom of 

the panel. 

The thermal tests will not be performed in the testing 

machine, but in a special fixture being fabricated for these 

tests.  Two Conrow SNH strip heaters will be used to radiate 

heat to the edges of the outboard stringers.  All other stringer 

and rib faces will be insulated.  The web panels will be cooled 

by forced convection to produce the desired temperature distribu- 

tion (Appendix D). 

STRAIN GAGES 

The strain gages used on the panel are Budd mediua, 

temperature (MT) foil strain gages.  The axial gages on the 

stringers are Type C12-124-A and the rosettes are Type C12- 

124-R3C.  These gages have a one-eight inch gage length and are 

recommended for temperatures up to 400°F for static loading 

conditions.  The strain gage mounting pattern is shown in Figure 

1. 

The cement finally selected for bounding the strain gages 

was Bean BAP-1.  Budd GA-50 .as used for the gages installed 

prior to the preliminary tests.  A previous experience had con- 

vinced the author that both the strain gages and the cement 

should be purchased from the same manufacturer.  It was discovered 

subsequently to the preliminary tests that the cured cement 

contained microscopic bubbles.  The manufacturer's sales 

representative was consulted and modifications to the installation 

procedure were made.  When these modifications did not eliminate 

the bubbles, a new batch of cement was obtained.  The results 

were the same.  A technical representative of the Budd Company 



was finally consulted and it was learned t'iat the GA-50 cement 

had been discontinued.  The decision was then made to use the 

BAP-1 cement. 

INSTRUMENTATION 

A Budd-Datran 20-channel Automatic Strain Indicating System 

was originally proposed for strain gage data collection.  A 

Clary digital printer owned by the University was to be used as 

the output device for the system.  However, this printer could 

not be used without major modifications.  This would have 

increased the total cost of the system to an amount well in excess 

of the budgeted amount.  As a result, the decision was made to 

go to a manual system. 

The manual system selected consisted of 2 Budd Model P-350 

Portable Strain Indicators and 13 Budd Model SB-1 10-channel 

Switch and Balance Units.  This system was purchased and was 

used in the preliminary tests.  Subsequently, Mr. D.E. Hull and 

Mr. Marvin Davidson, our wind tunnel director, modified one of 

the P-350 Strain Indicators so that it could be coupled, through 

a Dayton Instruments Model DI-6-54 digital converter, to an 

IBM 526 Printing Summary Punch.  Two views of the system are 

shown in Figures 4 and 5.  Manual switching and balancing is 

still necessary; however, the strain indicator readings are 

punched into cards-ten per card. 

Each of the switch and balance units is connected to nine 

gage elements—the nine axial gages on one side of a stringer or 

three vertically aligned rosettes on a web panel.  Due to the 

large number of gages, the load must be applied and released 

four times for a complete set of gage readings.  To facilitate 

rapid and accurate switching between runs, each switch and 

balance is permanently wired to an Amphenol No. 26-190-32 

connector and each set of nine gage elements is wired to a 

mating No. 26-159-32 connector. 

It was originally proposed that the temperatures would be 

measured with standard thermocouples bonded to the test panel. 

The possibility of measuring the temperatures with a surface 

gage are now being investigated in order to avoid adding additional 



wires to the panel 

EXPERIMENTAL RESULTS 

The mechanical loads were applied as shown in Figure 2. 

Four equal loads wore applied at the nodes at the top of the 

panel.  These were reacted by two equal loads at the inboard 

stringers at the bottom of the panel.  The loads were applied 

in increments of 3,000-4,000 pounds up to a maximum load of 

approximately 15,000 pounds.  The load was then decreased using 

approximately the same increments.  Due to the difficulty in 

applying the load uniformly with the hand pump, no attempt was 

made to use precise increments; however, it was possible to 

maintain a constant load within plus or minus 100 pounds while 

a set of nine strain gagas was being balanced and recorded. 

The experimental results are shown in Figures 6-8, along 

with the analytical results of the direct stiffness analysis 

(Appendix A).  The experimental points in these figures represent 

the strains in the vertical direction--e   in Tables A-3 through yy 
A-5.  Strains are plotted, rather than stresses for two reasons: 

1. The stresses at the location of a strain rosette 

cannot be calculated if any of the elements in the 

rosette are inoperative. 

2. Since strain readings normally have only two or three 

significant figures, while at least eight significant 

figures are carried in the analysis, it is more 

accurate to manipulate the analytical results. 

A large number of the strain gages were damaged beyond repair 

during the installation of the lead wires.  The stringer gages 

were particularly easy to damage although brackets were used 

to support the panel while the lead wires were being installed. 

As a result the number of experr .ental points in the figures 

is fewer than is desirable.  The solid circles represent the 

average strain for back-to-back gages, while the open cirles 

represent the strain at points where one of the back-to-back 

gages was inoperative. 

Each of the plots in Figures 6-8 represents the strains 



along d horizontal line of strain gages.  The locations are 

specified in the sketches on the figures.  The ordinates in 

the figures are the raicrostrain per pound of load applied to 

each inboard stringer.  The analytical results (Tables A-2 

through A-5) are tabulated in essentially this form.  The 

experimental results were reduced to this form by using the 

slope of a least-squares straight line through the data. 

There is generally good agreement between the analytical 

and experimental results.  The only explainable differences are 

those for the line of gages nearest the bottom of the panel. 

It appears that the loads are transfered from the stringers 

to the web more rapidly than the analytical solution can predict 

with the subelement size used here.  It would be better, therefore, 

to have smaller subelements in this region.  This is not possible 

with the present computer configuration. 

CONCLUSIONS 

The following conclusions can be drawn from the results of 

this investigation: 

1. The mathematical model of the test panel used for the 

direct stiffness analysis was sufficiently accurate 

to provide good agreement between the analytical and 

experimental results. 

2. The force and displacement methods could have been 

used with equally accurate results. 

3. The derivation of the recurrence relationship for 

initial strains extends the recurrence method of 

Pestel and Leckie to include thermal loading. 

~^T 
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Figure 1. Test Panel Geometry. 
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Figure 2.  Test Panel Mounted in the Testina Machine 
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Figure 4.  Strain Gage Data Collection System 
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APPENDIX A 

THE DIRECT STIFFNESS ANALYSIS PROGRAMS 

The Direct Stiffness Analysis Programs , arbitrarily named 

DORA, were developed to analyze the test panel using the method 

presented by Turner, Clough, Martin, and Topp in Reference 7. 

There are four versions of the program; however, only the version 

(DORA IV) used to obtain the results to be compared with the 

force/displacement results (Appendix B) and the experimental 

data will be described in detail.  The only inputs required are 

the geometry and physical properties of the structure and the 

external loads and constraints on the structure.  The outputs of 

the program are the displacements of the nodes.  An auxiliary 

program was written to calculate the strains in the stiffeners 

end the webs from the nodal displacements. 

The direct stiffness method of Turner, Clough, Martin, and 

Topp is the simplest of all the methods of mati/ix structural 

analysis.  It is based on the following: 

1.  The force-displacement relationship for each 

element in a structure can be expressed as 

{F} = [K]{u} (A-l) 

where 

{F} = the column matrix of the nodal forces 

on the element.  All nodal forces are 

included.  In the displacement analysis 

of Appendix B, only a subset of independent 

forces are considered. 

{u} = the absolute nodal displacements of the 

element.  In the displacement analysis 

only the displacements relative to a 

set of reference axes in the element are 

considered. 

[K] = the element stiffness matrix.  This matrix, 

sometimes called the unreduced stiffness 

matrix, is singular.  The reduced stiffness 

matrix used in a displacement analysis is 

__        A_1 



derived from the unreduced stiffness 

matrix by the elimination of specified 

rows and columns. 

2.  The force-displacement relationship for each element 

in a structure, Equation (A-l), can be expanded to 

the order of the assembled structure stiffness matrix 

by adding rows and columns of zeros for the nodal 

displacements that are irrelevant for the element 

in question.  These expanded element stiffness matrices 

can then be added to obtain the stiffness matrix of 

the assembled structure.  The resulting force- 

displacement relationship is of exactly the same 

form as Equation (A-l), but the force vector re- 

presents the external forces at the nodes.  Martin 

(Reference 4, Section 2.6) has an excellent discussion 

of the assembling of the stiffness matrix. 

The method of expanding each element stiffness matrix to the 

order the structure stiffness matrix is not practical for machine 

computation.  Even if only one element was considered at a time, 

the storage required would be cwica that required for the 

structure stiffness matrix.  It is relatively easy, however, to 

determine the position in the structure stiffness matrix for 

each element in the element stiffness matrix.  Thus, when an 

element stiffness matrix has been obtained, its elements can be 

added into the proper position in the structure stiffness matrix. 

This latter method is used in all versions of DORA. 

The stiffness matrix of the assembled structure is singular. 

It must be made nonsingular so that an inversion may be per- 

formed to obtain the displacements in terms of the external 

forces, i.e., 

{u} = [C]{F} (A-2) 

where    [C] = the flexibility matrix of the structure. 

There are two practical procedures for obtaining the flexibility 

matrix: 

1.   The rows and columns of the stiffness matrix 

coriespond:ng to the external constraints on the 
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structure can be eliminated.  This nonsingular 

reduced matrix can then be inverted.  Finally, 

the flexibility matrix can be obtained by ex- 

panding back to the original order and inserting 

zeros in the rows and columns corresponding to 

the constraints. 

2.   All but the diagonal elements in the rows and 

columns corresponding to the constraints can be 

set to zero and the diagonal elements can be 

set to unity.  This matrix is nonsingular and 

can be inverted.  Then the ones on the diagonal 

corresponding to the constraints can be set to 

zero. 

The second procedure is used in DORA primarily because it is 

easier to program for arbitrarily specified constraints. 

Once the flexibility matrix has been determined, the nodal 

displacements may be calculated from Equation (A-2).  These 

displacements may then be substituted into the element force- 

displacement relationship, Equation (A-l), to obtain the nodal 

forces. 

Several versions of the program were necessary because of 

the limited size of the available digital computer.  An IBM 

1620 with 40,000 positions of core storage and card input- 

output was used (all work prior to January, 1966, was done on 

the same machine with only 20,000 positions of core storage). 

The programs are all written in PDQ Fortran.  This programming 

system was selected because it requires less core storage for 

the subroutines than do any of the IBM Fortran systems.  It is 

also faster than the IBM Fortrans, but this is a secondary 

consideration.  In the near future a 1311 disk drive will be 

added to the computing system.  The entire set of programs can 

then be combined and enlarged. 

As mentioned above only DORA IV will be described in detail, 

however, the other versions can be summarized as follows: 

DORA I 

This program was written to demonstrate the feasibility of 

generating the assembled structure stiffness matrix as outlined 
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above.  Only structures with bar and/or beam elements can be 

analyzed with this program.  These elements were chosen because 

there are many truss, continuous beam, and frame examples in 

the literature which provided results for checking and debugging 

the program.  This program definitely proved the feasibility 

of the method.  However, in order to make it a one-part program, 

the structure is limited to fourteen nodes. 

DORA II 

The program was broken down into parts and triangular and 

rectangular plate elements were added.  The maximum number of 

nodes is limited to sixteen. 

DORA III 

Trapezoidal plate elements were added to the program and 

the beam elements were eliminated.  The elimination of the beam 

elements reduced the number of degrees of freedom at each node 

from three to two.  However, thv. part of the program which 

generated the flexibilities of the trapezoidal plate elements 

was very large, so that the maximum number of nodes is limited 

to twenty. 

DORA IV 

The trapezoidal plate element was eliminated and the maximum 

number of nodes was increased to twenty-five,  This is large 

enough for the analysis of the test panel.  Since this is the 

version used for the analysis of the test panel, it will be 

described in more detail.  The program is divided into six parts-- 

Initialization, Bars, Triangular Plates, Rectangular Plates, and 

Matrix Inversion and Output.  A program listing is given in 

Table A-l.  The purpose and use of each part is as follows: 

Initialization.  The number of nodes, Young's Modulus, 

Poisson's Ratio, and the x- and y-coordinates of the nodes are 

read and stored.  They are also repunched, with appropriate 

headings, for identification and debugging purposes.  The size 

of the structure stiffness matrix is calculated and the elements 

of this matrix are set to zero. 

Bars.  The data carJs for all of the bar elements in the 

structure are the input to this part of the program.  If the 
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structure does not contain bar elements, this part of the 

program is not loaded.  Each bar is described on one card.  The 

numbers of the two nodes which the bar connects, the area of 

the bar, and a control code must be specified.  The control cede 

for each card except the last is a zero.  A one in the last card 

causes the next program part to be read after the last element 

has been processed. 

The bar stiffness matrix was taken from Reference 7.  The 

order has been changed so that the x- and y-displacements of 

the first node preceed these of the secon 1 node.  There are 

no restrictions on the numerical order of the nodes, i.e., the 

number of the first node may be higher or lower than the number 

of the second node. 

Triangular Plates.  The input to the triangular plate pro- 

gram consists of cards containing the three node numbers, the 

thickness, and the control code (See "Bars").  This stiffness 

matrix was also taken from Reference 7.  Rearrangement was not 

necessary.  The rodes may be specified in any order. 

Rectangular Plates.  The numbers of the four nodes, the 

thickness, and the control code (See "Bars") must be specified 

for each rectangular plate.  The order of the nodes is important! 

The required order is lower left, lower right, upper left, and 

upper right. 

The rectangular plate stiffness matrix was taken from 

Reference 1, P. 50.  The shear and direct stress stiffness 

matrices were combined and rearranged in the node order specified 

above.  Argyris1 stiffness matrix was chosen over the one given 

in Reference 7 because it is compatible with the trapezoidal 

plate stiffness matrix used in DORA III.  Belirgen (Reference 2) 

has shown that either of these stiffness matrices gives satisfactory 

results for the type of structure being considered. 

Matrix Inverse and Output.  The primary purpose of this part 

of the program is to invert the stiffness matrix of the assembled 

structure.  However, this matrix must first be made nonsingular. 

The constraints are specified with a data card for each constrained 

node.  The data cards contain the node number; the x- and y- 

constraint codes, and the control code (See "Bars").  The con- 

straint code is 1.0 for a constrained displacement and 0.0 for 
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an unconstrained displacement.  After each card is read, the 

row(s) and column(s) in the stiffness method corresponding to 

the constrained displacement(s) are modified by the method 

outlined previously.  When all constraints have been imposed, 

the stiffness matrix is inverted to obtain the flexibility 

matrix. 

The loads on the structure are specified similarly to the 

constraints.  A card is read for each node with at least one 

external load.  The card contains the node number, the x- and 

y-loads, and the control code (See "Bars").  Both loads must 

be specified although one of them may be zero.  The loads are 

placed in the load vector [F]; and after the last card is read, 

the displacements are calculated using Equation (A-2).  The 

displacements are then punched into cards.  The x- and y- 

displacements (u and v) of each node, including the constrained 

nodes, are punched. 

The stiffness matrix is replaced by the flexibility matrix 

during the inversion; therefore, the stiffness matrix must be 

reassembled in order to study the effects of different external 

constraints on a structure.  This will not be necessary when 

the disk drive becomes available since the stiffness matrix 

may be stored on the disk and recalled when needed.  The effects 

of any number of loading conditions can be studied by generating 

a new load vector, i.e., by reading in a new set of load cards. 

Examples 

Four panel configurations were analyzed using DORA IV 

(Figure A-l).  Since the test panel was loaded symmetrically, 

only one half of the panel is analyzed.  The roller constraints 

along the centerline of the panel maintain the symmetry of 

lateral displacement, but allow longitudinal displacements.  The 

constraint on the lower edge represents the load applied with 

the lower whiffle tree. 

Panel Configuration I is also analyzed by the force and 

displacement methods and the results are compared (Appendix B). 

The results are given in Table A-2.  The other three configura- 

tions could nci_ be analyzed with the Force/Displacement Program 

due to the large number of internal forces and deformations. 

A-6 
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Panel Configurations II-IV were analyzed to obtain 

stiffener and web strains for comparison with the experimental 

data.  Due to the size limitations of the computer, it was not 

possible to use one configuration with small enough subelements 

to provide strains which would compare favorably with the 

experimental data.  Therefore, Configurations II, III, and IV 

were used to obtain strains in the upper, center, and lower 

panels, respectively.  The vertical dimensions fo^ the smaller 

subelements (Nodes 1-16) were selected so that the line of 

strain gages was along the horizontal centerline of the elements. 

The results are shown in Tables A-3 through A-5. 

The present versions of DORA do not have provisions for 

calculating stresses or strains.  A special program was written 

to calculate the axial strains in the stiffener elements and 

the direct and shear strains at the center of the web elements. 

A listing of this program is given in Table A-6. 

The method used here for obtaining the strains for comparison 

with the experimental data yields satisfactory results and 

could undoubtedly be used successfully with most other types 

of structures.  However, a substructure method, such as the one 

presented in Reference 6, would certainly yield more accurate 

results.  The capability has not, as yet, been incorporated into 

DORA. 
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C  C TABLE A-l 

DORA PROGRAM LISTING 

C      DURA IV - BARS AND PLATES (EXCEPT TRAPEZOIDAL) 
C 
C     INITIALIZATION - 25 NODES - 2 DEGREES OF FREEDOM 
C a***************-************»***»******»*»*****»»-** 

C 
C      EiL. COOK - MAY 1966 
C 

COMMON NO.NOX.E.V«ST IFF(50,5O),X(25)»Y(?5) 
C 
C      PUNCH AND PRINT DORA IV HEADING 
C 

CONTROL 102 
PUNCH 944 
PUNCH 999 
PRINT 944 

C 
C      PRINT PROGRAM SWITCH 2 OFF MESSAGE 
C 
C      IF SENSE SWITCH 2 IS *0N*, THE MESSAGES AT THE END OF THE PROGRAM 
C       ARE BYPASSED. 
C 

CONTROL 102 
PRINT 950 

C 
C      PUNCH NODES« MODULUS. AND RATIO HEADINGS 
C 

PUNCH 999 
PUNCH 955 
PUNCH 956 
PUNCH 999 

C 
C      READ NUMBER OF NODES, YOUNG*S MODULUS, AND POISSON*S RATIO 
C 

10 READ 901,NO,E,V 
PUNCH 901,NO,E,V 

C 
C     PUNCH COORDINATE HEADING 
C 

PUNCH 999 
PUNCH 999 
PUNCH 960 
PUNCH 999 

C 
C      READ NODE NUMBER» X COORDINATE« AND Y COORDINATE» 
C 

DO 20 J=l»NO 
READ 902,I »X( I> »Yf I ) 

20 PUNCH 902«I,X(I>,Y(I) 
C 

NOX=2*NO 
DC 25 1=1»NOX 
DO 25 J=l.NOX 

25 STIFF{I,J)=0.0 
C 

ALINK=LINK(1.0! 
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C TABLE A-l  (CONTINUED) 

901 FORMAT(I3.2E16.8) 
902 FORMAT!I3.2E16.8) 
944 FORMAT<42H DORA I V - 25 NODES - 2 DEGREES OF FREEDOM) 
950 FORMAT(26H TURN PROGRAM SWITCH 2 OFF! 
955 F0RMAT(5HN0 Or,3x.8H YOUNG*S.7X.1CH POISSCN*S) 
956 F0RMAT(5HN0DES,3X«8H MODULUS,9X.6H RATIO) 
960 FORMAT(5H N0DE«6X»2H XI14X.2H Y) 
999 FORMAT(1H ) 

END 
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C  C TABLE A-l  (CONTINUEO) 

C      DORA IV - BARS AND PLATES (EXCEPT TRAPEZOIDAL) 
C 
C     BARS - ?5 NODES - 2 DEGREES OF FREEDOM 
C ****#*****#■>.****#***«**##*#♦♦**•*#■»«*#*»»* 

C 
C     E.L. COOK - MAY 1966 

COMMON NO'. NOX»E« ViST IFF<50,50),X<25)«Y(25) 
DIMENSION ESTIF(4.4) 

C 
C      PUNCH HEADINGS 
C 

PUNCH 999 
PUNCH 999 
PUNCH 901 
PUNCH 999 
PUNCH 902 
PUNCH 999 

C 
C      READ THE NUMBERS OF THE TWO END NODES, THE AREA, AND THE CONTROL 
C      CODE.  THE CONTROL CODE IS 0 FO ALL MEMBERS EXCEPT THE LAST ONE, 
C       FOR WHICH IT IS 1. 
C 

30 READ 903,I,J,AR.KK 
PUNCH 903,I,J,AR 

C 
XJI=X(J)-X(I) 
YJI=Y<J)-Y(I) 
SoI=SQRTF(XJI*XJI+YJI*YJI) 

C      A=LAMBDA AND U=MU 
A=XJI/SJI 
ASQ=A*A 
U=YJI/SJI 
USQ=U*U 
AU=A*U 
AEL=AR*E/SJl 
ESTIFt1,1)=AEL*ASQ 
ESTIF(1,2)=AEL*AU 
ESTIF<1,3>=-ESTIF<1,1) 
ESTIFC1,4)=-ESTlF<1»2> 
ESTIF(2»2>=AEL*USQ 
ESTIF<2>3>=ESTIF(1,4) 
ESTIF(2.4)=-ESTIF<2,2) 
ESTIF(3,3)=ESTIF(1.1) 
ESTIF<3»4>-ESTIFf1,2) 
ESTIF(4,4)=EST!F(2,2) 
DO 40 K=l,4 
DO 40 L=K,4 

*n   lrST!tr(L?,<>-EST!tr<'<?,_} 
DO 50 K=l,2 
KI-K+2*(1-1 > 
KJ = K + 2*<J-l ) 
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C  C TABLE A-l  (CONTINUED) 

DO 50 L=l.2 
LI=L+2*(1-1) 
LJ=L+2*(J-l) 
STIFF(KI ,L! )=STIFF(KI «LI >+ESTIF<K.L) 
ST IFF(KI.LJ)=STIFF(KI,LJ>+ESTIF(K,l_ + 2) 
ST!FF<KJ,LI)=STIFF(KJ«LI)+ESTIF(K+2.L) 

50 ST!FF<KJ.LJ)=STlFF(KJ,LJ)+E3TIF(K+2.L+2) 
IF(KK1890.30,60 

C 
60 ALINK=LINK(I.0) 

C 
890 STOP 

C 
901 FORMAT(4HBARS) 
902 F0RMATC6H NODES,6X.5H AREA) 
903 F0RMAT(2I3,E16«8,13) 
999 FORMAT(1H ) 

C 
END 

A-12 



TABLE A-l  (CONTINUED) 

C 
C 
C 
C 
C 
C 
C 

DORA IV - BARS AND PLATES (EXCEPT TRAPEZOIDAL) 

TRIANGULAR PLATES - 25 NODES - 2 DEGREES OF FREEDOM 

E.L. COOK - MAY 1966 

COMMON NO .NOX•E♦V.ST IFF < 50 . 50).X(25). Y(25) 
DIMENSION ESTIF(6.6> 

ND0F=2 
c 
c PUNCH HEADINGS 
c 

PUNCH 999 
PUNCH 999 
PUNCH 901 
PUNCH 999 
PUNCH 902 
PUNCH 999 

c 
c READ THREE NOD 
c 

READ THREE NODE NUMBERS. THE THICKNESS. AND THE CONTROL CODE 

80 READ 906.I.J.K.T.KK 
PUNCH 906.I.J.K.T 

XJI=X(J)-X(I) 
XKJ=X(K>-X(J) 
XIK=X(I>-X(K> 
YJI=Y(J)-Y(I) 
YKJ-Y(K)-Y(J) 
YIK = Y( I )-Y(K) 
ET = 0,5*E*T/(( 1,0-V**2)*ABSF(XJI*Y(K)+xiK*Y(J)+XKJ*Y( I ) ) ) 
Vl=0.5*(l.O-V) 
V2=0.5*<1.0+V> 
ESTIF(1.1!=V1*XKJ*XKJ+YKJ*YKJ 
ESTIF(1.2)=-V2*XKJ*YKJ 
ESTIF(1,3)=V1*XKJ*XIK+YKJ*YIK 
ESTIFI1.4)=-Vl*XKJ*YIK-V*XIK*YKJ 
ESTIF(1.5)=V1*XJI*XKJ+YJI»YKJ 
ESTIFC1.6)=-Vl*XKJ*YJI-V*XJI*YKJ 
ESTIF(2'2)=XKJ*XKJ+Vl*YKJ*YKJ 
ESTIF(2»3)=-V1*XIK*YKJ-V*XKJ*YIK 
ESTIF(2»4)=XKJ*XIK+V]*YKJ*YIK 
ESTIF(2»5)=-Vl*XJI*YKJ-V*XKJ*YJl 
ESTIF(2»6)=XJI*XKJ+V1*YJI*YKJ 
ESTIF(3.3)=V1*XIK*XIK+YIK*YIK 
ESTIF(3.4)=~V2*XIK»viK 
c ^> t i • * -J 

ESTIF(3 
ESTIF(4 
ESTIF(4 
ESTIF(4 
ESTIF(5 
ESTIF(5 
ESTIF(6 

' V 1 - /\ W J 

6)=-Vl*XIK*YJI-V*XJI*YIK 
4)=XIK»XIK+V1*YIK»YIK 
5)=-Vl*XJI*YIK-V*XIK*YJI 
6)=XJI*XIK+Vl*YJI*YIK 
5)=V1*XJI*XJI+YJI#YJI 
6» =-V2*XJI*YJI 
6)=XJI«XJI+V1*YJI*YJI 
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C  C TABLE A-l  (CONTINUED) 

DO 85 L=1.6 
DO 85 M=L.6 
EST IF(L «M)=ET*ESTIF(LfM) 

85 ESTIF(M.L)=ESTIF(L.M) 
DO 90 L=l.2 
LI=L+ND0F*(1-1) 
LJ=U+NDOF*(J-l) 
LK=L+ND0F*(K-1) 
DO 90 M=1.2 
MI=M+NDOF*( 1-1 ) 
MJ=M+NDOF*(J-l) 
MK = M+ND0F*(K-1 ) 
STIFF(LI,MI)=STIFF(Li.MI)+ESTIF(L.M) 
ST IFF»L].MJ)=STIFF!L1.MJ)+ESTIF(L.M+2> 
ST|FF(LI.MK>-STIFF<L ItMK)+ESTtF(L*M+4) 
STIFF(LJ,MI)=STIFF(LJ,MI)+ESTIF(L+2.M) 
STIFF(LJ.MJ)=STIFF(LJ,MJ)+ESTIFIL+2.M+2) 
STIFF(LJ,MK)=STlFF(LJ,MK)+ESTIF(L+2»M+4) 
STIFF(LK«Ml )=STIFF(LK,MI >+ESTIF<L+4,M) 
STIFF(LK.MJ)rSTIFF<LK.MJ>+ESTIF<L+4«M+2> 

90 STIFF(LK«MK) = STIFF(LK.MK'>+EST!F<L + 4«M + 4 > 
C 

IF(KK)890»80.100 
C 

100   ALINK = l_iNK (1.0) 
C 

890   STOP 
C 

9oi FORMAT<17HTRI ANGULAR PLATES) 
902 FORMAT(7H  NODES,6X.1OH THICKNESS) 
906 F0RMAT(3I3.E16.8.13) 
999 FORMAT(1H ) 

C 
END 
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c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 

C TABLE A-l (CONTINUED) 

DORA IV - BARS AND PLATES (EXCEPT TRAPEZOIDAL) 

RECTANGULAR PLATES - 25 NODES - 2 DEGREES OF FREEDOM 
*###*♦****##*##**##**■**#****###*#***#*#*»#*#**♦*#***»** 

E.L. COOK - MAY 1966 

COMMON NO.NOX.E« V.ST IFF( 50,50) . X ( 25 ) -. Y < 25 ) 
DIMENSION ESTIF<8.8> 

PUNCH HEADINGS 

PUNCH 999 
PUNCH 999 
PUNCH 901 
PUNCH 999 
PUNCH 902 
PUNCH 999 

READ THE NUMBERS OF THE FOUR NODES, THE THICKNESS. AND THE CONTROL 
CODE.  THE NODE NUMBERS MUST BE IN THE FOLLOWING ORDER   '  " 
LEFT, LOWER RIGHT, UPPER LEFT, AND UPPE9 RIGHT.  THE 
IS 0 FOR ALL CARDS EXCEPT THE LAST ONE. FOR WHICH IT 

60 READ 905,I,J,K,L,T,KK 
PUNCH 905»I.J.K.L.T 

LOWER 
CONTROL CODE 
IS 1 . 

AM=(X(J 
ET=E*T/ 
A1=ET*8 
B1=ET*8 
C1=ET#6 
A2=ET*4 
B2=ET*4 
C2=ET*3 
ESTIF(1 
ESTIF(1 
ESTIF(1 
ESTIF(1 
ESTIFC1 
ESTIF(1 
ESTIF(1 
ESTIF(1 
ESTIF(2 
ESTIFC2 
ESTIF(2 
ESTIF(2 
ESTIFC2 
CJTIP(P 

ESTIF(2 
ESTIK(3 
ESTIFO 
ESTIF(3 
EST!F(3 
EST1F(3 
ESTIF(3 

)-X(I))/(Y(K)-Y(I>) 
<24.0*<1,0-V**2)) 
0/AM 
0*AM 
0*V 
0*AM»(1.0-V) 
0*(1.0-V>/AM 
0*(1.0-V) 
1)=A1+A2 
2)=C1+C2 
3) --A1+0.5*A2 
4) =Ci-C2 
5) =0.5*A1-A2 
6>=-ESTlF<1.4) 
7>=-0.5*ESTIF(1.1) 
8> =-ESTIF< 1.2) 
2)=B1+B2 
3)=ESTIF(1.6) 
4) =0.5*61-82 
5>=ESTIF(1.4) 
6> =-Bl+0.5*B2 
■7 ) =ESTTP< ;.Ri 
8>=-0.5*ESTIF(2.2) 
3)=ESTIF(1.1) 
4)=ESTIF(1.8) 
5>=ESTIF(1.7) 
6)=ESTIF(1.2) 
7)=ESTIF(1,5) 
8)=ESTIF(1,4) 
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C  C TABLE A-l  (CONTINUED) 

ESTIF<4.4)=ESTIF<2,2> 
ESTIF(4,5>=ESTIF(1,2) 
ESTIF(4.6>=ESTIF<2.8) 
ESTIF<4,7)=ESTIF(1,6) 
ESTIF(4.8>=ESTIF<2«6) 
E5TIFC"   5>=EST IF< 1 . 1 ! 
ESTIF<5*6)=ESTIF(1<8) 
ESTIF<5.7)=ESTIF<t.3) 
ESTIF(5«8)rEST!F(1.6) 
ESTIF(6.6>=ESTIF(2,2> 
ESTIF<6.7)=ESTIF(1.4) 
ESTIF(6.8)=ESTIF<2.4> 
ESTIF<7.7)=ESTIF(1.1) 
ESTIF(7.8)=ESTIF(1,2) 
E5TIF<8t8)=ESTIF(2.2) 
DO 65 M=l,8 
DO 65 N = M,8 

65 ESTIF(N.M)=ESTIF(M.N) 
DO 70 M=l,2 
MI=M+2«(1-1) 
HJ=M+2*(J-l5 
MK=M+2*(K-1) 
ML=M+2*(L-1) 
DO 70 N=l.2 
NI=N+2*<1-1) 
NJ = N+2*! J-l ) 
NK=N+2*<K-1) 
NL = N+2*(l--l ) 
STIFF(MI,NI)=STIFF<MI,N!)+ESTIF(M,N) 
ST IFF(MI,NJ)=STIFFCMI,NJ)+ESTIF(M,N+2) 
STIFF(MI,NK)=STIFF(MI «NK)+ £STIF(M.N+4) 
ST IFF (MI .NL>=STIFF(MI . Nl_ ) +EST I F ( M ♦ N+6 ) 
STIFF(MJ.NI)=STIFF(MJ,NI>+EST!F<M+2.N> 
ST IFF(MJ,NJ)= ST IFF(MJ,NJ)+ESTIF(M+2.N+2) 
STIFF(MJ.NK)=STIFF(MJ,NK>+ESTIF(rt+2.N+4) 
STIFF<MJ.NL>=STIFF<MJ.NL>+ESTIF(M+2.N+6) 
STIFF(MK.NI > =ST1FF<MK.NI >+ESTIF(M + 4.N) 
STIFF(MK.NJ)=STIFF(MK.NJ)+ESTlF(M+4,N+2) 
STIFF(MK.NK)=ST!FF<MK.NK>+ESTIF(M+4,N+4) 
STIFF(MK.NL)=ST'FF<MKoNL)+ESTIF<M+4.N+6) 
STIFF(ML.NI '=ST IFF(ML«N! >+ESTIF(M-»-6.N) 
STIFF(ML.NJ)=STlFF<MLiNJ)+ESTIF<M+6.N+2) 
S7IFF(ML.NK)=STIFF(ML.NK)+ ESTIF(M+6•N+4) 

70 STIFF<ML«NL)=STI FF<ML.NL>+ESTIF(M+6.N + 6> 
C 

IF(KK)890»60.100 
C 

100 ALINK=LINK(1.0) 
C 

890 STOP 

901 FORMAT( 18HRECTANGULAR PLATES) 
902 FORMAT(8H   NODES.8X.1Oh THICKNESS' 
905 F0RMAT(4I3.C16.8,13) 
999 FORMAT(1H ) 

C 
END 
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C  C TABLE A-l  (CONTINUED) 

C DORA IV - BARS AND PLATES (EXCEPT TRAPEZOIDAL) 
C 
C MATRIX INVERSE AND OUTPUT - 25 NODES - 2 DEGREES OF FREEDOM 
C «fr»************»*****»*»**«**»***************»»**»*««* » » »«*♦♦# 
C 
C      E.Lo COOK - MAY 1966 
C 

COMMON NOtNOX«E«V.STIFF(50,50),X(25),Y<25) 
DIMENSION P(50).D<50) 

C 
N02=2*NO 

C 
C      PUNCH CONSTRAINT HEADINGS 
C 

PUNCH 999 
PUNCH 999 
PUNCH 901 
PUNCH 999 
PUNCH 902 
PUNCH 999 

C 
C      READ THE NUMBER OF A NOOE WITH  AT LEAST ONE CONSTRAIN!» THE X AND 
C       Y CONSTRAINT CODES» AND THE CONTROL CODE.  THE CONSTRAINT CODE IS 
C       1.0 FOR CONSTRAINED DISPLACEMENTS AND 0.0 FOR UNCONSIRAI MFC 
C       DISPLACEMENTS.  THE CONTROL CODES ARE THE SAM? ,<\'  I J iwr ;. 
C 

130 READ 904,I,F1,F2,KK 
PUNCH 904,I,F1,F2 

C 
J = 2*( I-) ) 
IF(F1 )890« 160, MO 

140 00 1'. 0 K= 1 ,N02 
STIFF(J+l,K)=0.0 

150 STIFF(K.J+l>=0.0 
STIFF (J+l.J+l ) = 1 .0 

160 IF(F?>890.220.170 
170 DO iro K=l,N02 

STIFF (J+2.K)=0.0 
180 STIFF <K»J+?)=0.0 

STIFF ( J + 2< J+2> = 1 .'5 
220 IF(KK)890.130.230 
230 CONTINUE 

C 
600 DO 6C< 1=1»N02 

ST0RE=ST1FF(I,I> 
STIFF!I,1)=1,0 
DO 601 J=l,N02 

601 STIFF(I,J)=STIFF(1,Jl/STORE 
DO 604 K=l,N02 
IFIK-I>602,604,602 

602 STORf =STIFF(K,! > 
ST|^^ IM i i=u,0 
DO 603 J=l,N02 

603 STIFF(K,J)=S7IFF(K,J)-STORE*STIFF(I,J) 
604 CONTINUE 
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C  C TABLE A-l  (CONTINUED) 

235 00 236 I=1.N02 
236 P(I)=0.0 

C 
C      PUNCH LOAD HEADINGS 
C 

PUNCH 999 
PUNCH 999 
PUNCH 903 
PUNCH 999 
PUNCH 902 
PUNCH 999 

C 
C      READ THE NUMBER OF A NODE WITH AN EXTERNAL LOAD. THE X AND Y 
C       LOADS. AND THE CONTROL CODE»  TWO LOADS MUST BE SPECIFIED. 
C       ALTHOUGH ONE OF THEM MAY BE ZERO. THE CONTROL CODES ARE TH£ oAM£ 
C       AS IN PART 2. 
C 

238 READ 904.I,P1,P2,KK 
PUNCH 904.I»PI»P2 

C 
J*2#{I-:) 
P(J+l> =P! 
Pt J+2S=P2 
IF(KK>e9G.238*240 

240 CONTINUE 
C 

DO 250 1=1,NC2 
D(I>*0*0 
DO 250 J=l,N02 

250 D(I)«0<I)+STIFF(IvJ)*P<J) 
C. 
C     PUNCH DISPLACEMENT HEADINGS 
C 

PUNCH 999 
PUNCH 999 
PUNCH 90s 
PUNCH 999 
PUNCH 906 
PUNCH 999 

C 
C      DISPLACEMENTS - THE NODE NUMBER IS FOLLOWED BY THE X AND Y 
C       DISPLACEMENTS«  DISPLACEMENTS ARE PUNCHED FOR ALL NODES. EVEN THE 
C       CONSTSAJNED ONES 5 
C 

00 260 1 = 5 «NO 
J»2*<<-l) 

260 PUNCH 904.!<0<J+l)»0(J+2> 
C 

JF(i£NSE SWITCH 2)280.270 

270 CONTROL 102 
PRINT 980 
PRINT 985 
CONTROL S02 
PRINT 990 
PRINT 995 

280 PAUSE 
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C TABLE A-l  (CONTINUED) 

GO TO 235 

890 STOP 

901 FORMAT < 1 1HCONSTRAI NTS) 
902 F0RMAT(5H N00E«6X«2H X.14X.2H Y) 
903 FORMAT(5HL0ADS) 
90^ FORMATCI3.2E16.8.13) 
905 FORMAT(13HDISPLACEMENTS) 
906 F0RMATC5H NODE.6X«2H U.14X.2H V) 
980 F0RMATC49H FOR A NEW PROBLEM OR FOR A CHANGE OF CONSTRAI NTS, 1H. ) 
985 FORMAT(45H THE ENTIRE SET OF PROGRAMS MuST BE RELOADED«! 
990 FORMAT(47H HOWEVER. ANY NUMBER OF ADDITIONAL LOAD VECTORS) 
995 F0RMAT(45H MAY BE LOADED AT THIS TIME.  DEPRESS «START* ) 
999 FORMAT(1H ) 

END 
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C  C TABLE A-2 

DIRECT STIFFNESS ANALYSIS - PANEL CONFIGURATION I 

DORA IV - 25 NODES - 2 DEGREES OF FREEDOM 

NO OF 
NODES 

YOUNG*S 
MODULUS 

POISSON*S 
RATIO 

12 .lOOOOOOOE 08 .31600000E 00 

NODE 

1 .00000000E-50 
2 .40000000E 01 
3 .60000000E 0 1 
4 .0O000000E-5O 
5 «40000000E 0 1 
6 »60000000E 0 1 
7 .00000000E--50 
8 .40000000E 0 1 
9 .60000000E 0 1 
10 .00000000E-50 
11 .40000000E 0 1 
12 .60000000E 01 

•00000000E-50 
•00000000E-50 
•00000000E-50 
.80000000E 01 
.80000000E 0 1 
.80000000E 01 
.16000000E 02 
•16000000E 02 
. 16000000E 02 
•24000000E 02 
•24000000E 02 
•24000000E 02 

BARS 

NODES AREA 

1 2 .30100000E 00 
2 3 .30100000E 00 
4 5 .30100000E 00 
5 6 .30100000E 00 
7 8 .30100000E 00 
8 9 .30100000E 00 
10 1 1 «30100000E 00 
1 1 12 .30I00000E 00 

1 4 .60200000E 00 
2 5 .60200000E 00 
4 7 .60200000E 00 
5 8 .60200000E 00 

10 .60200000E 00 
8 1 1 .60200000E 00 
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c c 

RECTANGULAR PLATES 

TABLE A-2 (CONTINUED) 

NODES THICKNESS 

1  2  4 5 . 10000000E 00 
2  3  5 6 .10000000E 00 
4  5  7 8 .10000000E 00 
5  6  8 9 .inoocoüOE oo 
7  8 10 1 1 .10000000E 00 
8  9 11 12 .10000000E 00 

CONSTRAINTS 

NODE        X 

3 .10000000E 01 
6 •10000000E 01 
9 .10000000E 01 

12 .10C00000E 01 
2 .O00OOO0OE-50 

•00000000E-50 
.OO00O0OOE-50 
.00O00OOOE-50 
.00000000E-50 
.10000000E 01 

LOADS 

NODE 

10 
1 1 

.00000000E-50 

.OOOOOOOOE-50 
.50000000E 00 
.50000000E 00 

DISPt ACEMENTS 

NODE U 

1 -.50552647E-07 
2 -.28441223E-07 
3 .OOOOOOOOE-50 
4 . 14233045E-06 
5 .61209393E-07 
6 »00000000E-50 
7 .80316400E-07 
8 .26406319E-07 
9 .00000000E-50 

10 .79833870E-07 
11 .29270008E-07 
12 .00000000E-50 

•75252476E-06 
.00000000E-50 
•15515326E-06 
.89208273E-06 
•68912770E-06 
•63526471E-06 
.12602640E-05 
.11859289E-05 
•12038422E-05 
•17228336E-05 
.16198911E-05 
.15222091E-05 

A-21 



C  c TABLE A-2 (CONTINUED) 

STIFFENER STRAINS 

NODES      STRAINS 

5 2 .55278560E-08 
2 3 .14220611E-07 
4 5 -.20280265E-C7 
5 6 -.30604698E-07 
7 8 -.134Y7520E-07 
8 9 -.13203159E-07 
10 1 1 -»12640965E-07 
1 1 12 -.14635004E-07 

1 c .17444747E-07 
2 5 •86140962E-07 
4 7 •46022662E-07 
5 8 •62100150E-07 
7 10 .57821200E-07 
8 I 1 •54245275E-07 

WEB STRAINS 

NODES             EXX               EYY EXY 

.51792854E-07 -.10177662E-06 

.73077446E-07 .30925730E-07 

.54061404E-07 -.40712350E-07 
•66586169E-07 -,11162630E-07 
.56033230E-07 -.22010880E-07 
•47020b69E-07 -.19763200E-07 

1 2 4 5 -.73762040E-08 
2 3 5 6 -.81920420E-00 
4 5 7 8 -.16878892E-07 
5 6 8 9 -.21903928E-07 
7 8 10 1 1 -.13059243E-07 
8 9 1 1 12 -.13919082E-07 
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C  C TABLE A-3 

DIRECT STIFFNESS ANALYSIS " PANEL CONFIGURATION |I 

DORA IV - 25 NODES - 2 DEGREES OF FREEDOM 

NO OF     YOUNG*S 
NODES    MODULUS 

24   .lOOOOOOOE 08 

POISSON*S 
RATIO 

•31600000E 00 

NODE 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1 
12 
13 
10 
15 
16 
17 
18 
19 
20 
2! 
22 
23 
24 

.00000000E-50 
•20000000E 0 1 
.40000000E 01 
.60000000E 0 1 
.00000000E-50 
.20000000E 0 1 
•40000000E 01 
•60000000E 01 
•00000000E-50 
.20000000E 0 1 
.40000000E 01 
.60000000E 01 
.00000000E-50 
.20000000E 01 
.40000000E 01 
.60000000E 0 1 
.OOOOOOOOE-50 
.20000000E 0 1 
.40000000E 0 1 
.60000000E 0 1 
.00000000E-50 
•20000000E 0 1 
.40000000E 01 
•60000000E 01 

.00000000^-50 

.00000000E-50 

.00000000E-50 

.OOOOOOOOE-50 

.3000000CE 0 1 
«30000000E 01 
•30000000E 01 
.30000000E 0 1 
»50000000E 01 
.50000000E 01 
.50000000E 01 
.50000000E 01 
.80000000E 01 
.80000000E 01 
.80000000E 01 
•80000000E 0 1 

■«80000000E 0 1 
-.80000000E 01 
-.8000000CE 01 
-.80000000E 01 
-.16000000b 02 
-.16000000E 02 
-.16000000E 02 
-.16000000E 02 
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C  C TABLE A-3 (CONTINUED) 

BARS 

NODES       AREA 

1 2 .30100000E 00 
2 3 .30100000E 00 
3 4 «30100000E 00 

13 14 .30100000E 00 
14 15 .30100000E 00 
15 16 .30100000E 00 

1 5 .60200000E 00 
3 7 .60200000E 00 
5 9 .60200000E 00 
7 1 1 •60200000E 00 
9 13 .60200000E 00 

1 1 lc. .60200000E 00 
17 le .30100000E 00 
18 19 .30100000E 00 
19 20 .30100000E 00 
21 22 •30100000E 00 
22 23 .30100000E 00 
23 24 •30100000E 00 

1 17 .60200000E c-> 
3 19 •60200000E 00 

17 21 .60200000E 00 
19 23 .60200000E 00 

RECTANGULAR PLATES 

NODES THICKNESS 

1 2 5 6 . 10000000F 00 
2 3 6 7 .10000000E 00 
3 4 7 8 .IOOOOOOOE 00 
5 6 9 10 .10000000E 00 
6 7 10 1 1 .10000000E 00 
7 8 1 1 12 *10000000E 00 
9 10 13 14 .10000000E 00 

10 1 1 14 15 .10000000E 00 
1 1 12 !,5 16 .10000000E 00 
17 18 1 2 ,10000000E 00 
18 19 2 3 .10000000E 00 
19 20 3 4 .10000000E 00 
21 22 17 18 .10000000E 00 
22 23 13 19 .iOOOOoOOE 00 
23 24 19 20   «IOOOOOOOE 00 

CONSTRAINTS 

NODE        X Y 

•00000000E-50 
•00000000E-50 
.00000000E-50 
.00000000E-50 
•00000000E-50 

16 .IOOOOOOOE 0 1 .00000000C-5Ü 
23   .00000000E-50   .IOOOOOOOE 01 

24 »IOOOOOOOE 01 
20 .IOOOOOOOE 01 
4 . IOOOOOOOE 01 
8 .lOOOOOOOb" 01 

12 .IOOOOOOOE 01 

A-2 4 



c    c 

LOADS 

TABLE A-3 (CONTINUED) 

NODF 

13   .00000000E-50 
15   .00000000E-50 

.50000000E 00 
•50000000E 00 

DISPLACEMENTS 

NODE U 

1 .80047330E-07 
2 .56581539E-07 
3 .30157771E-07 
4 .00000000E-50 
5 .8457S695E-07 
6 .51000175E-07 
7 .23830666E-07 
8 .OOOOOOOOE-50 
9 .61306633E-07 

10 .41834539E-07 
11 .21936972E-07 
12 .00000000E-50 
13 .75304050E-07 
14 .55530950E-07 
15 .29327916E-07 
16 .000OOOOOE-50 
17 . 13537860E-06 
18 .11062759E-06 
19 c60!66070E-07 
20 .00000000E-50 
21 -.48537227E-07 
22 -.46085294E-07 
23 -.27554959E-07 
24 .00000000E-50 

.12714139E-05 

.12398273E-05 

.11966348E-05 

.12037975E-05 

.14385289E-05 
♦13982069E-05 
.13632036E-05 
»13570573E-05 
• 15569601E-05 
•14966693E-05 
.14705235E-05 
.14501316E-05 
.17583445E-05 
.15446214E-05 
.16494427E-05 
.14993756E-05 
.90784096E-06 
.78620528E-06 
.70126854E-06 
.64637866E-06 
•75408037E-06 
.46944948E-06 
.00000000E-50 
.15857147E-06 

A-2 5 



c    c 

STIFFENER   ST-JAINS 

TABLE   A-3    (CONTINUED) 

NODES < STRAINS 

1 2 — .11732895E-07 
2 3 - .13211884E-07 
3 4 - .15078885E-07 

13 14 - .98865500E-08 
14 15 - .13101517E-07 
15 16 - .14663958E-07 

1 5 •55705000E-07 
3 7 .55522933E--07 
5 9 .59215600E-07 
7 1 1 .53659950E-07 
9 13 •67128133E-07 

1 ! 15 .59639733E-07 
17 18 - .12375505E-07 
18 19 - .25230760E-07 
19 20 - .30083035E-07 
21 22 .12259665E-08 
22 23 .92651675E-08 
23 24 •13777479E-07 

1 17 .45446612E-07 
3 19 .61920787E-07 

17 21 .19220073E-07 
19 23 .87658567E-07 

'EB STRAINS 

NODES EXX 

1 2 5 6 -. 14259328E- -07 
2 3 6 7 -.13398320E- -07 
3 4 7 8 -.13497109E- -07 
5 6 9 10 -. 13260903E- -07 
6 7 10 1 1 -.11766770E- -07 
7 8 1 1 12 -. 1 1441910E- -07 
9 10 13 14 -.96112980E- -08 

10 1 1 14 15 -.11525151E- -07 
1 1 12 15 16 -.12816222E- -07 
17 18 1 2 -.12054200E- -07 
18 19 2 3 -.19221322E- -07 
19 20 3 4 -.22580961E- -07 
21 22 17 18 -.55747690E- -08 
22 23 18 19 -.79827960E- -08 
23 24 19 20 -.81527780E- -08 

EYY 

.54249090E-07 

.54158050E-07 
•53304760E-07 
•54223400E-07 
•51445580E-07 
.50098550E-07 
.41556080E-07 
.37611690E-07 
.38027200E-07 
.51074686E-07 
.59311767E-07 
•65799069E-07 
•29407274E-07 
.63626521E-07 
.74317233E-07 

EXY 

-.18153320E-07 
-.21533710E-07 
-.80041000E-09 
-.33260870E-07 
-.18052120E-07 
-.71079800E-08 
-.63887840E-07 
.23183440E-07 
-.4 1382930E-07 
-.45141640E-07 
-.372' -5700E-07 
-.13807310E-07 
-.80277350E-07 
-.12331944E-06 
.31402960E-07 

A-26 
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C TABLE A-4 

DIRECT STIFFNESS ANALYSIS - PANEL CONFIGURATION in 

DORA IV - 25 NODES - 2 DEGREES OF FREEDOM 

NO OF 
NODES 

YOUNG*S 
MODULUS 

POISSON*S 
RATIO 

24 «lOOOOOOOE 08   .31600000E 00 

NODE 

1 .OOOOOOOOE- -50 •OOOOOOOOE- -50 
2 .20000000E 01 •OOOOOOOOE- -50 
3 .40000000E 01 .OOOOOOOOE- -50 
4 .60000000E 01 .OOOOOOOOE- -50 
5 .OOOOOOOOE- -50 .30000000E 01 
6 .20000000E 01 .30000000E 01 
7 .40000000E 01 .30000000E 01 
8 .60000000E Cl .300000C0E 01 
9 .OOOOOOOOE- -50 .50000000E 01 

10 .20000000E 01 •50000000E 01 
1 1 •40000000E 01 .50000000E 01 
12 .60000000E 01 • 50000000E" 01 
13 .OOOOOOOOE- -50 .80000000E 01 
14 .20000000E 01 «80000000E 01 
15 .40000000E 01 •80000000E 01 
16 .60000000E 01 .80000000E 01 
17 .OOOOOOOOE- -50 .16000000E 02 
18 .20000000E 01 .16000000E 02 
19 .40000000E 01 .16000000E 02 
20 .600C0000E 01 .16000000E 02 
21 •OOOOOOOOE- -50 -.80000000E 01 
22 .20000000E 01 -.80000000E 01 
23 .40000000E 01 -.80000000E 01 
24 •60000000E 01 -.80000000E 01 

A-27 
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c  c TABLE A-4 (CONTINUED) 

BARS 

NODES       AREA 

1 2 .30100000E 00 
2 3 .-30100000E 00 
3 4 .30100000E 00 

13 14 »30100000E 00 
14 15 .30100000E 00 
15 16 .30100000E 00 

1 5 .60200000E 00 
3 7 .60200000E 00 
5 9 •60200000E 00 
7 1 1 .60200000E 00 
9 !3 .60200000E 00 

i: 15 .50200000E 00 
17 18 .30 100000E 00 
18 19 .30 100000P 00 
19 20 .3C100000E 00 
21 22 «30100000c 00 
22 23 .30100000E CO 
23 24 .30 100000E 00 

1 21 .60200000E 00 
3 23 .60200000E 00 

13 17 .60200000E 00 
15 19 «60200000E 00 

RECTANGULAR PLATES 

NODES THICKNESS 

1 2 5 6 . 10000000E 00 
2 3 6 7 . 10000000E 00 
3 4 7 8 .10GOOOOOE 00 
5 6 9 10 .10000000E 00 
6 7 10 1 1 •lOOOOoOOE CO 
"7 e 1 1 12 . 1C000000E 00 
9 10 i3 1 4 «loooooooe 00 

10 1 1 14 15 .10000000E 00 
1 1 12 15 16 .10000000E 00 
21 22 1 2 o10000000E 00 
22 23 2 3 .10000000E 00 
23 ?4 3 « .1C0000OCE 00 
13 14 17 18 .lOOOOOOCt 00 
i ■=♦       i '-J      i • >      I   f i  JÜOywijOoc.     v.' ~J 

15 it 19 2C   »SOOOOOOOE 00 

CONSTRAINTS 

NODE        X 1 

24 , 10000000E 01 •OOOOOOOOE- -50 
8 »1OOOQuOOE 01 vOOuoooooe- -so 
4 *1OOOOOOCE 01 »OOOCOOOOE- -50 

1? . 10000000E o; .00000000c- -50 
16 . 10000000t 0 1 «ooooooo«..:- -50 
20 .iOOOOOOOE Oi .OO0000COE- -50 
23 .OOOCOOOOE- -50 .1000O000S 0 1 

A-2* 



c c 

LOADS 

NODE X 

17 .00000000E-50 
19 .00000000E-50 

TABLE A-4 (CONTINUED) 

.50000000E 00 

.50000000E 00 

DISPLACEMENTS 

NODE 

1 .13206989E- -06 
2 . 1 I225373E- -06 
3 .61489530E- -07 
4 .OOOOOOOOE- -50 
5 .14320089E- -06 
6 . 1Q357874E- -06 
7 .57020047E- -07 
3 •OOOOOOOOE- -50 
9 . 12558823E- -06 

10 .87080298E- -07 
1 1 .44502105E- -07 
12 .OOOOOOOOE- -50 
13 •62587986E- -07 
14 .43476770E- -07 
15 .22566553E- -07 
16 .OOOOOOOOE- -50 
17 .838103eOE- -07 
16 .59394033E- -07 
19 .30876461E- -07 
20 .OOOOOOOOE- -50 
21 -.50281472E- -07 
22 -.48551816E- -07 
23 -.29089571E- -07 
24 .OOOOOOOOE- -50 

.91577810E-06 

.78321554E-06 

.70207611E-06 
-.63645268E-06 
.10336221E-05 
•96561388E-06 
.89863685E-06 
.88768051E-06 
. 11247121E-05 
. 10823834E-05 
. 10241376E-05 
. 10237987E-05 
.12747602E-05 
.12606629E-05 
. 1 1967597E-05 
. 12130666E-05 
. 17546426E-05 
.15908938E-05 
.16437561E-05 
.15422935E-05 
.75928189E-06 
.47514069E-06 
eOOOOOOOOE-50 
. 16121557E-06 
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STIFFENER STRAINS 

NODES      STRAINS 

TABLE A-4 (CONTINUED) 

1 2 - .99080800E-08 
2 3 - •25382100E-07 
3 4 - .30744765E-07 
13 14 - .955560Ü0E-08 
14 55 - .10455108E-07 
15 16 - . 1 1283276E-07 

1 5 .392 !81333E-07 
3 7 .65520247E-07 
5 9 •45545000E-07 
7 1 1 •62750400E-07 
9 13 .50016033E-07 

1 1 \Z •57540700E-07 
17 18 - . 12208173E-07 
18 19 - . 14258786E-07 
19 20 . 15438230E-07 
21 22 .86482800E-09 
22 23 .97311225E-06 
23 24 . 14544785E-07 

1 21 .19562027E-07 
3 23 .877 '59514E-07 

13 17 .59985300E-07 
15 19 .55874550E-07 

WEB STRAINS 

NODES EXX 

I 2 5 6 -. 14859578E- -07 
2 3 6 7 -.24330723E- -07 
3 4 7 8 -.29627395E- -07 
5 6 9 10 -. 19532521E- -07 
6 7 10 1 1 -.22284222E- -07 
7 8 1 1 12 -.253e0<5^E- -07 
o 10 13 14 -. 144047R7E- -07 

10 1 1 1 4 15 -a15872104E- -07 
1 1 12 15 16 -. 16767164E- -07 
21 22 1 2 -.45216260E- -08 
22 23 2 3 -.7S254890E- -08 
23 24 3 4 -.80999900E- -co 
1 1 1 4 1 7 1 8 -• loaetfloir- -07 
14 15 18 19 -.12356948E- -Q7 

15 16 !9 ?0 -.1336 J754E- -0"* 

EYY 

.5004Ü380E-07 

.63159840E-07 

.74664760E-07 

.51964880E-07 
•60567570E-07 
-65354740E-07 
.54721250E-07 
.58483590E-07 
.60315000E-07 
•29035691E-07 
.63134435E-07 
.73582077E-07 

-4557671Ul>0" 
. 4 05! 396'.Ü "0 7 

EXY 

-.49733370E-07 
-.39219870E-07 
-. 19839860E-07 
-.36112020E-07 
-.38559810E-07 
•»59032800E-08 
-.31873790E-07 
-.41460430E-07 
.33607000E-<^9 

•.32728630E-07 
-. 12335849E-06 
.29559230E-07 

-_4?1 40?C)OF-n7 

-. ,<-:460200E-08 
-.20769560^-0-' 

A-JO 



' T" 

c c 

DIRECT 

DORA IV - 25 NODES 

TABLE A-5 

STIFFNESS ANALYSIS - PANEL CONFIGURATION IV 

- 2 DEGREES OF FREEDOM 

NO OF    YOUNG*S 
NODES    MODULUS 

24   .lOOOOOOOE 08 

POISSON*S 
RATIO 

.31600000E 00 

NODE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 I 
12 
!3 
1« 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

•00000000E-50 
.20000000E 0 1 
•40000000E 01 
.60000000E 01 
.00000000E-50 
.20000000E 01 
•400C0000E 01 
.&O0O00O0E 01 
.0O0OOOO0E-50 
.20000000E 01 
.400C0000E 01 
•60000000E 01 
.O0O0OOO0E-50 
.20000000E 01 
.40000000E 01 
.60000000E Cl 
.OOOO0O0OE-50 
•20000000E 01 
.40000000F 01 
•60000000c 01 
»00000000E-50 
.20000000E 01 
.40000000E 01 
.60000G00E 0 1 

.00000000E-50 
»00000000E-50 
.00000000E-50 
.00000000E-50 
•30000000E 01 
•30000000E 01 
•30000000E 01 
.30000000E 01 
.50000000E 01 
.50000000E 0 1 
.50000000E 01 
.50000000E 01 
.80000000F 01 
08OOOOOOOE 0 1 
.80000000E 01 
»80000000E 01 
.16000000E 02 
.16000000E 02 
.16000000E 02 
.16000000E 02 
.24000000E 02 
.24000000E 02 
.24000000E 02 
.24000000t 02 
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C  C TA8LE A-5 (CONTINUED) 

BARS 

NODES        AREA 

1 2 .30100000E 00 
2 3 .30100000E 00 
3 4 «30100000E 00 

13 14 .30100000E 00 
14 15 .30100000E OC 
15 16 *30!OOOOoE 00 

1 5 .60200000E 00 
3 -> •60200000E 00 
5 9 .6020000CE 00 
7 1 1 •60200000E 00 
9 13 .60200000E 00 

1 1 15 .60200000E 00 
17 18 .30 100000E 00 
18 19 «30 100000E 00 
19 20 .30 100000E 00 
21 22 .30I00000E 00 
22 23 .30100000E 00 
23 24 »30 1000COE 00 
17 21 t60^00000E 00 
19 23 .60200000E 00 
13 17 •60200000E 00 
15 19 «60200000E 00 

PECTANGULAR PLATES 

NODES THICKNES! 

1 2 5 6 . IOOOOOOO; 00 
2 3 6 7 h 10000000E 00 
3 4 7 3 . IOOOOOOOE 00 
? 6 9 10 ,looooooce 00 
6 7 10 1 1 .10000000E 00 
7 8 1 1 12 ,10000C0UE 00 
9 10 13 14 .100COOCOE CO 

10 1 1 14 15 . '.OOOOOOOE 00 
1 I 12 15 16 . 10000000E 00 
1 3 14 17 18 . 10000000E 00 
14 55 13 19 .loooooooe 00 
15 16 19 20 *10000000E 00 
1 7 18 21 22 *lOOOPOOOE 00 
i 6 1 9 2? 23 .lOOOUOOOt 00 
19 20 23 24 * 1OOOOOOOE 00 

CONSTRAINTS 

NODE 

20 »1OOOOOOOE 01 •OOOOOOOOE- -50 
8 . 1OOOOOOOE 0! •OOOGOOOOC- -5C 
4 .1OOOOOOOE 0 1 .OOOOOOOOE- -50 

12 .1OOOOOOOE 0 I .OOOOOOOOE- -50 
16 .■OOOO^OOT 0! .000000006' -50 
2-5 ♦ 1OOOOOOOE Oi .OOOOOOOOE- -50 

.OOOOOOOOE-SO   «100000CCE 01 

A-3; 
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c c 

LOADS 

NODE 

TABLE A-5 (CONTINUED) 

21   .00OOCOO0E-5O 
23   .OOOOOOOOE-50 

.50000000E 00 

.50000000E 00 

DISPLACEMENTS 

NODE U 

1 ~. 10867604£:-06 
2 -.98632255E-07 
3 -.55491384E-07 
4 .OOOOOOOOE-50 
5 .110979506-06 
6 .10819231E-06 
7 <.52i47767E-07 
8 .00000000E-50 
9 . 15500238E-06 
10 .12517964E-06 
U .70666772E-07 
12 .00000000E-50 
13 .10986507E-06 
14 .85647165E-07 
15 .46712091E-07 
16 .00000000E-50 
17 .76403165E-07 
18 .53168969E-07 
19 .275810465-07 
20 »OOOOOOOOE-50 
21 «63139130E-07 
22 .592340t>5E-07 
23 .30847897E-07 
24 .OOOOOOOOE-50 

•84300032E-06 
.55634454E-06 
.ooooooooe-50 
.25324771E-06 
.85770273E-06 
•59664253E-06 
»33207062E-06 
.31620945E-06 
.88665446E-06 
•70000530E-06 
.50966276E-06 
.49044809E-06 
.97G01706E-06 
.85816736E-06 
.74349165E-06 
.73025990E-06 
.13270019E-05 
. 13C48632E-05 
,12456l52t-05 
.12568298E-05 
.1803rt613E-05 
.?o438256E-05 
.16939021E-05 
.15950362E-05 

A-33 



c    c 

STIFTENER   STRAINS 

TABLE   A-5    (CONTINUED) 

NODES STRAINS 

I 2 1 »50218950E-08 
2 3 .21570435E-07 
3 4 .27745693E-07 

13 14 ™* 1 t121Q8955E-07 
14 IS ~ 1 , 19467537E-07 
15 16 "~ < .233 56045E-07 

1 5 .49008033E-08 
3 7 1 . 1 1069020E-06 
5 9 1 , 14475865E-07 
7 1 1 .88796070E-07 
9 13 1 .27787533E-07 

1 1 15 < .77942963E-07 
17 18 .11617098E-07 
18 19 *"* t .12793961E-07 
19 20 .13790523E-07 
21 22 .11952532E-07 
22 23 •*" 1 . 14193084E-07 
23 24 ""■ 1 , 15423948E-07 
17 21 1 .59607425E-07 
19 23 < .56035862E-07 
13 17 1 •44623100E-07 
13 19 1 .62765450E-07 

WEB STRAINS 

NODES EXX 

1 2 5 6 . 18141490E- -08 
2 3 6 7 -.32259J30E- -08 
3 4 7 8 .83590400E- -09 
5 6 9 10 -.81524820E- -08 
6 7 10 1 1 -.27639353E- -07 
7 8 1 1 12 -.30703635E- -07 
9 10 13 1 4 -. 13510162E- -07 

10 1 1 14 15 -.23361985E- -07 
1 1 12 15 16 -.29344716E- -07 
13 14 17 18 -. 1 1363026E- -07 
14 15 18 19 -. 16130749E- -07 
15 16 19 20 -. 18573285E- -07 
17 18 21 22 -.11784816E- -07 
18 19 22 23 -.13493523E- -07 
19 20 23 24 -. 14607236E- -07 

EYY 

.91667280E-08 

.62061433E-07 

.65838724E-07 

.33078640E-07 

.70238730E-07 

.87957690E-07 
«40254180E-07 
.65331900E-07 
,78940110E-07 
.50230010E-07 
.59301180E-07 
.64293341E-07 
.50988860E-07 
.49203080E-07 
.49155333E--07 

EXY 

•.65848980E-07 
-.15281851E-06 
.77286494E-07 

-.96674800E-07 
•.10485204E-06 
-.41392100E-08 
-.88736220E-07 
-.86835890E-07 
-.12104050E-07 
-.37618240E-C7 
-.46706650E-07 
-. 16999700E-08 
-.44743540E-07 
-.1fUy6JUUfc.-UB 
-.21708660E-07 
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C  C TABLE A-6 

STIFFENER AND WEB STRAIN PROGRAM LISTING 

C      STIFFENER AND WEB STRAINS FROM NODAL DISPLACEMENTS 

c 
C     E«L. COOK - JUNE 1966 
C 

DIMENSION X<25>.Y<25),U<25).V(25>.IA<25).16(25).A<25) 
DIMENSION JA( 16) «JB( 16) • JC( 16) « ->D( 16) . r ( 16) 
DIMENSION DELTA(S)»SIGMA<3> 

C 
C      READ NUMBER OF NODES, YOUNGS f ODULUS. AND POISSONS RATIO 
C 

801 READ 90 1.NO.E.VV 
EP-E/( 1 .0-VV**2 > 
GS=E/(2.0*(1,0+VV)) 

C 
C      READ NODAL COORDINATES 
C 

DO 10 I=1.NO 
802 READ 901«KtX(I>*Y(I> 

IF(K-I>700.10.700 
10 CONTINUE 

C 
C      READ STIFFENFR DATA 
C 

IK=1 
803 REAO 902.IA(IK),IB!IK)iA(IK)»ICODE 

IK=IK+1 
IF( ICODE-1 »803.30.700 

30 IK=I'K-< 

C 
C      REAO WEB DATA 
C 

JK=1 
804 READ 903«JA(JK),JB<JK).JC(JK).JD(JK),T(JK),ICODF 

JK = JK-» 1 
ir< ICODE-1 >804.50.700 

50 JK=JK-1 
C 
C      READ NODAL DISPLACEMENTS 
C 

DO 60 1=1.NO 
gnc DC An 90 I ; J ; '_■{ • ) ; v ; J ) 

IF( I-J)700.60.700 
60 CONTINUE 
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C  C TABLE A-6 (CONTINUED) 

C      CALCULATE STIFFENER STRAINS 
C 

DO 807 IL= 1 . IK 
IAI = IA( IL) 
XA = X< tA I ) 
YA = Y( I AI ) 
UA = U( IAI ) 
VA = V( IAI ) 
IB! = IB( ID 
XB = X( IBI ) 
YB-Y( IBI ) 
U8 = U( IBI ) 
VB = V( IBI ) 
ALX=X8-XA 
ALY=YB-YA 

AL2=ALX*#2+ALY**2 
ESTR=(4LX#(UB-UA)+ALY*(VB-VA ) )/AL2 

807 PUNCH 902. I AI . IBI .ESTR 
C 
C      CALCULATE WEB STRAINS 
C 

DO 806 IL= 1 t JK. 
JAI=JA (ID 
XA=X<JAI) 
YA = Y(JA I ) 
DELTA( 1 > = U(JAI ) 
DELTA(5)=V(JAI) 
J8I=JB( ID 
XB=X<JBI) 
DELTA(2)=U(JBI) 
QELTA<6> =V(JBI ) 
JCI =JC( ID 
XC=X(JCI) 
YC=Y(JCI) 
DELTA(3)=U(JCI) 
DELTA(7)=V<JCI> 
JDI=JD(IL) 
XD=X<JDI) 
DELTA(4)=U(JDI) 
DELTA(8)=V(JDI) 
XBA=XB-XA 
P= (XC-XA)/xBA rf. 
D=(XD-XA>/xBA 
B=D-1.0 
TR = I . 0/MC)-P) 
YCA=YC-YA 
EFA = 0.5 
XI =0.5 
SIGMAU ) - (ETA-I ,01/XBA 
S I GMA ( ? ! " - c,! GM A ! ! ! 
S i&MA(3'=-TR»ETA/XBA 
ciHMA(£;T—c!G""C"*) 
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C TABLE A-6 (CONTINUED) 

EXX=0.0 
DO 70 ! = 1 ,4 

70 EXX=EXX+SIGMA(I>*DELTA<I> 
SIGMA(5>=(Xl-1.0)/YCA 
SIGMA(6> =-Xl/YCA 
SIGMA(7)=TR*(D-XI)/YCA 
SIGMA(8)=TR*(XI-P)/YCA 
EVY=0.0 
EXY=0.0 
DO 80 J=1,4 
EYY=EYY+SlGMA(J+4)*D£LTA(J+4) 

80 EXY = EXY + SIGMA(J + 4)»DELTA(J)+ SIGMA(J)*DELTA(J + 4 ) 
806 PUNCH 904,JAI,JBI»JCI.JDI»EXX.EYY,EXY 

GO TO 801 

700 STOP 

901 FORMATCI3.4E16.8) 
902 F0RMATC2I3.E16.8. I 3) 
903 F0RMAT(413,E16.8.13) 
90« F0RMAT(4I3,3E16.8! 

END 
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APPENDIX B 

THE MATRIX FORCE/DISPLACEMENT PROGRAM 

Due to the analogy that exists between the matrix force 

method and the matrix displacement method of structural analysis, 

it has been possible to write a program that can be used to 

analyze structures by either method.  The analogy between the 

two methods was first shown by Argyris and Kelsey (Reference 1). 

Pestel and Leckie (Reference 5) have expanded on the analogy 

and have developed an excellent notation which will be used here. 

The original program was written by the author for a force 

analysis.  It was intended that the experimental panel would be 

analyzed using only the force method and the direct stiffness 

method.  However, one of the author's graduate students, Mr. 

Gordon E. Lambert, elected to write a displacement method 

program for his masters thesis (Reference 3).  A study of the 

force program and the analogy revealed that the force program 

could be modified and used for both types of analysis.  The 

modifications consist of one additional digit in a control card 

to specify the type of analysis, some additional headings, and 

one program segment which is used only in the displacement 

analysis. 

The equations for both methods are derived in References 1, 

3, and 5; therefore, the derivation will not be shown here.  The 

equations which must be solved to perform an analysis will be 

stated, the analogy will be discussed, and some of the unique 

features of the program will be explained. 

The Force Method 

iiiti iorcc equcioxons aret 

[D10] = [B1]
T[Fvl[B0J (B-l) 

[D11J = CBl]T[Fv][B1] (B_2) 

[X] = -[Dil]"
1[D10] (B-3) 

[B] = [B0J + [BJ [Xj (B-4) 
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[Fd] = [B]T[Fv] [B] (B-5) 

{p} = [B]{f} (B-6) 

{d} = [Fd]{f] (B-7) 

Three of the matrices in the above equations must be deter- 

mined from the physical and geometric properties of the structure: 

[BQ] = a set of internal forces in the structure due to 

unit values of the external forces.  Each column 

represents a set of internal forces due to one 

of the external loads. 

[B,] = a set of internal forces in the structure due to 

unit values of the redundants.  Each column represents 

a set of internal forces due to one cf the redundants. 

For a statically determinate structure [B,] = [0] 

and [B] = [BQ] . 

[F ] = the flexibility matrix of the unassembled structure. 

This is a diagonally partitioned matrix where the 

submatrices are the element flexibility matrices. 

Equations (B-l) through (B-7) can be easily evaluated once 

these three matrices have been determined.  The [Bn], [B,], and 

[F ] matrices for the experimental panel are shown later in this 

appendix.  The physical interpretation of the other matrices in 

the above equations are as follows: 

[D,-J = the relative displacements at the redundants due 

to unit values of the external loads.  Each column 

represents the displacements due to one of the 

external loads. 

[D,,] = the relative displacements at the redundants due 

to unit values of the redundants.  Each column 

represents the displacements due to one of the 

redundants. 

[X] = the values of the redundants due to unit values of 

the external loads.  Each column represents the 

redundants due to one of the external loads. 
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[B] = the values of the internal forces due to unit values 

of the external loads.  Each column represents the 

internal forces due to one of the external forces. 

[F,] = the flexibility matrix, i.e., the values of the 

external displacements due to unit values of the 

external loads.  Each column represents the dis- 

placements due to one of the external loads. 

p = the column matrix of internal forces. 

f = the column matrix of external forces. 

d = the column matrix of external displacements. 

The Displacement Method 

The displacement equations are: 

[C10] = [Ax]
T[Kp] [A0] (B-8) 

[C11] - [A1]
T[K ] [A1] (B-9) 

[Y] = -[C11]"1[C10] (B-10) 

[A] = [AQ] + [A1] [Y] (B-ll) 

[Kf] = [AJ
T
[KD3 [A] (B-12) 

{v} = [A] d (B-13) 

{f} = [Kf] d (B-14) 

The three input matrices required for a displacement analysis 

are: 

[AnJ = the deformations due to unit displacements at the 

external loads. 

[A,] = the deformations due to unit displacements at the 

kinematic deficiencies.  A kinematic deficiency exists 

for each degree of freedom for which there is no 

external load.  If there are loads corresponding to 

all unconstrained external displacements, [A,] = [0] 

and [A] = [AQ]. 

[K ] = the stiffness matrix for the unassembled structure. 
P 

The physical interpretation of the other matrices are as 

follows: 
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[C,Q] = the net forces at the kinematic deficiencies due 

to unit values of the displacements at the external 

loads.  Each column represents the forces due to 

one of the external loads. 

[C,,] = the net forces at the kinematic deficiencies due 

to unit values of the displacements at the 

deficiencies.  Each column represents the forces 

due to a displacement at one of the deficiencies. 

[Y] = the displacements at the kinematic deficiencies 

due to unit displacements at the external loads. 

Each column represents the displacements at the 

deficiencies due to a displacement at one of the 

external loads. 

[A] = the deformations due to unit values of the dis- 

placements at the external loads.  E<*ch column 

represents the deformations due to one external 

displacement. 

[Kf] = the stiffness matrix, i.e., the external forces 

required to produce unit displacements at these 

forces,  Each column represents the external forces 

due to a unit displacement at one of the forces. 

{v}= the column matrix of deformations 

{f} and {dl v/ere previously defined. 

Equations (B-13) and (B-14) give the deformations and external 

forces for prescribed displacements.  Since the external forces 

are usually known, rather than the displacements, and the internal 

forces are needed, rather than the deformations; two additional 

equations are necessary to fully implement a displacement analysis. 

They are 

[B] - [K ][Al[K I"1 (B-15) 

[Fd] = [Kf]
_1 (B-16) 

Once these two equations are evaluated, Equations (B~6) 

and (B-7) can be used to calculate the internal forces and the 

displacements. 
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The Analogy Between the Force and Displacement Methods 

The analogy between the two methods is evident if Equations 

(B-l) through (B-7) are compared with Equations (B-8) through 

(B-14).  The analogous matrices are tabulated below 

Force Displacement Force Displacement 

{f} {d} 'Dio" tcio] 

{p} {v} [Dn] [cn] 

[B0] [A0] [XJ [Y] 

[Bx] [Ax] [B] [A] 

[V [K   ] 
P Ifd) [Kf] 

References 1, 3, and 5 all present tabulations of the type 

shown above with varying degrees of detailed operations and 

explanation. 

The Matrix Force/Displacement Program 

The Matrix Force/Displacement Program is divided into six 

parts: 

Part I  - Input 

Part II  - Recursion Analysis 

Part III - Calculation of Flexibility or Stiffness Matrix 

Part IV - Internal Forces and Displacements-Displacement 

Method 

Part V  - Internal Forces and Displacements-Output 

Part VI  - Initial Forces 

A program listing is shown in Table B-l.  Parts I through 

V will be discussed here.  Part VI, which is used only for 

thermal analyses, is discussed in Appendix C.  Although the pro- 

gram naturally divides into the six parts listed above, the 

primary reason for the division is the effective utilization of 

the computer.  The program is written in PDQ Fortran for the 

IBM 1620 described in Appendix A. 

Part I - Input.  The inputs to the program consist of a 

control card followed by the flexibilities, or stiffnesses, of 
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the unassembled structure and the nonzero elements of [B-J and 

[B,J, or [AQ] and [A,].  The control card contains the basic 

parameters of the structure such as the number of elements; 

internal forces; external forces; redundants, or deficiencies; 

and nonzero elements in [B,.] and [B, ] , or [A0J and [A, j .  It also 

contains a control digit which specifies the type of analysis to 

be performed.  The format of the control card and the other input 

cards is described in detail in Table B-l. 

The input format of the element flexibilities, or stiffness, 

requires explanation.  Since [F ], or [K ], has an order equal 

to the number of internal forces, it is usually very large.  The 

storage requirements are greatly reduced if tne element flexibilities, 

or stiffness, are stored in a special format and used as needed. 

The minimum storage requirements would result if each flexibility, 

or stiffness, matrix was given a variable name and properly 

dimensioned , or if blocks of storage were set aside for each 

type of element-bars, rectangular plates, etc.  This would, 

however, reduce the generality of the program.  To avoid this, 

a single array of dimensions £x5 is used, where £ is tne number 

of internal forces.  Five columns are specified because, to 

date, the largest element flexibility, or stiffness, matrix 

used has been the 5x5 rectangular or trapeqoidal plate matrix. 

The element flexibilities, or stiffnesses, are right-justified 

in the array to permit identification of each type of element 

flexibilities, or stiffnesses.  The identification procedure is 

described in the next section. 

The inputs are also punched into cards, with appropriate 

headings, for problem identification and debugging. 

Fart II - Recursion Analysis.  The solution of the matrix 

force or displacement equations previously presented requires 

the inversion of [D,,] or [C,,].  Since the order of [D,,] is 

equal to the number of redundants and the order of [C,,] is equal 

to the number of kinematic deficiencies, the required inversion 

may be relatively large.  Festel and Leckie (Reference 5) have 

presented a recurrence method where the redundants, or deficiencies, 

are divided into a number of groups and an equal number of lower- 

ordered inversions are performed.  During the programming of the 
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recurrence method it was discovered that, not only is the 

programming simplified, the data storage requirements are 

minimized if the number of groups is equal to the number of 

redundants, or devidicnci.es.  Therefore, if there are n 

redundants, or deficiencies, there are n one-by-one inversions 

or, in fact, no inversions at all. As is shown in Part IV, a 

displacement analysis requires the inversion of the stiffness 

matrix [K ]; however, this matrix is usually not large, 

The recurrence equations for the force method are as 

follows: 
,i,T {DoV = {Bi1} XJfBoV 

fB^1]   =   fßj]   +   {B^HxV 

(B-17) 

(B-18) 

(B-19) 

Equation (B-15) is the recurrence method equivalent of a com- 

bination of Equations (B-l) and (B-2). These equation? ^ould 

be written as 

T 
fDoiJ = [Dio'DnJ = fBi^fVfBo'Bi] (B-20) 

For each recursion, the last column of the matrix [B^,] is 

i i        i 
taken as fB,}.  As a result, both (D«,} and {X } are vectors 

rather than rectangular matrices.  TLJ unit redundants {X }.are 

determined by dividing all of the elements of {Dn1l, except the 
i+1 last, by the negative of the last element.  The matrix [B~.   ] 

has one less column f.tu-m [B«,], and after n recursions, fB„, J 

is the unit internal force matrix [Bj. 

The recurrence equations for the displacement method can be 

written from Equations (B-17) through (P--19), with the aid of 

the analogy, as 

{coi> - {Ai)TfKp]fAoV 

(Y1)   =   -   (cJoJ/C^ 

(B-21; 

(B-22) 
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fA011] = [A0] + tAj}{Y?-}T (3-23) 

The triple matrix product in Equation (B-17) and (B-21) 

lvoives the matrices [F ] and [K ] which are stored in the v       p 

impressed format described in Part I.  The operations required 
i T or a force analysis will be illustrated.  The product {B,}  [F ] 

s performed first.  The first row of [F ] is checked, from the 

eft, for the first nonzero element.  If the first element in 

;he row is nonzero, the element f.exibility matrix is a 5x5 matrix. 

[■his matrix is then premultipliec by the first five elements of 
{B, } to obtain the first five el«-:?ants of the product.  Then the 

sixth row of [F ] is checked.  If t:\e  fourth element were the 
v 

first nonzero element, the element flexibility would be a 2x2 

matrix.  The sixth and seventh element of {B,} would be used to 

obtain the next two elements of the product.  This procedure is 

continued until all elements of the product have been calculated. 

Finally, [B^,] is premultiplied in the normal manner by the 

product {B^}T[Fv] to obtain (D^}. 

Provision is also made in this part of the program for punch- 

ing intermediate output which can later be used for a thermal 

analysis (Appendix C). 

Part III - Calculation of Flexibility or Stiffness Matrix. 

The purpose of this part of the program is to evaluate the flexi- 

bility matrix, Equation (B-5), for a force analysis or the 

stiffness matrix, Equation (B-12), for a displacement analysis. 

It should be noted that these two equations are not given by 

Pestel and Leckie.  It can be shown, however, that they are 

equivalent to Pestel and Leckie:s equations. 

A procedure similar to the one used in Part II for 

{B^}T[Fv], or {AJ}T[K J, is used to obtain [Fy][B], or [K ][A]. 

The major difference is that the products are rectangular matrices 

rather than vectors. 

Part IV - Internal Forces and Displacements-Displacement 

Method.  This part is used in a displacement analysis to evaluate 

Equations (B-15) and (B-16).  Since the product [K ][A] was 

determined in Part III and stored, it is not necessary to perform 
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this operation again in tnis part. 

Part V - Internal Forces and Displacement-Output.  The 

only purpose of this part of the program is to punch the internal 

force matrix [B] and the flexibility matrix [FJ for either type 

of analysis. 

Analysis of the Test Panel 

The use of the iMatrix Force/Displacement Program is illus- 

trated by analyzing Panel Configuration I (Figure A-l) by both 

the force method and the displacement method.  The other panel 

configurations could not be analyzed because of the size 

limitations of the program.  The results are compared with those 

calculated by the direct stiffness method. 

An exploded view of the panel is shown in Figure B-l.  The 

independent internal forces selected for the analyses are also 

shown.  There are twenty elements, forty-four internal forces, 

and five reactions. 

Force Analysis. The first requirement of a force analysis 

is to determine the number of redundants. This number is given 

by the equation 

R = P + E - D (B-24) 

where    R = number of redundants. 

P = number of independent internal forces. 

E = number of external reactions. 

D = number of nodal degrees of freedom.  For 

Panel Configuration I, there are twelve nodes, 

each with two degrees of freedom, 

therefore R = 44 + 5 - 2 x 12 = 25 

The twenty-five redundants must now be chosen.  Rather than 

attempting to define a statically determinate structure by 

removing selected internal or external constraints, Argyris' 

method (Reference 1) of self-equilibrating redundant force 

systems will be used.  Figure C-2 shows the four types of 

systems selected for this analysis.  All possible combinations 

of these systems must be used to obtain the required twenty- 

five redundants.  The number of each type of system is 
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Rib-Web Systems = 12 

Stringer-Web Systems = 9 

Four Panel Systems = 2 

Two Panel Systems = _2 

Total Systems = 25 

The unit redundant matrix [B, ] can be determined using Figures 

B-l and B-2.  Each column of [B,] consists of the internal 

forces due to one of the redundant systems.  The seventy-six 

nonzero elements of [B,] are given in Table B-2 along with their 

row and column designation. 

The internal forces due to unit values of the external 

forces are shown in Figure B-3.  Each of the two systems of 

forces is statically equivalent to its corresponding unit external 

load.  The nonzero elements of [B„] are given in Table B-2 with 

their row and column designation.  Column 1 corresponds to the 

outboard load and column 2 to the inboard load. 

The element flexibilities were determined by inverting the 

stiffnesses.  The calculation of the stiffnesses is discussed in 

the following section.  The flexibilities are shewn in Table B-2 

in the format in which they are stored in the computer.  Although 

all of the ribs and stringers are followed by the plate elements 

in this example, any order could have been used. 

The results of the analysis are also shown in Table B-2. 

The two columns labeled "Internal Forces" are the matrix [B] and 

the "Displacements" are the matrix [F,].  These results are 

discussed in a later section. 

Displacement Analysis.  The number of kinematic deficiencies 

for a displacement analysis is given by the equation 

K - D - F - E (B-25) 

where    K = number of kinematic deficiencies. 

D -  number of nodal degrees of freedom. 

F = number of external forces. 

E -= number of external reactions, 

therefore K = 2 x 12 - 2 - 5 = 17 

Each unconstrained nodal displacement must be given a unit value, 

and the corresponding element deformations must be obtained to 

determine the matrix [A,].  Figure B-4 shows the required dis- 
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placements for the example.  The unit displacements at the loads 

(**) are also shown.  The deformations resulting from these 

displacements are used to determine the matrix [A„].  The 

reference system used to determine the plate element deformations 

is shown below.  The X-axis is fixed to the lower edge of the 

plate and thy Y-axis remains perpendicular to the X-axis. 

This system is consistant with the independent internal forces 

y 

rrfn >>rn/s 
x 

(Figure B-l).  The nonzero elements of [A,] and [An] are shown 

in Table B-3. 

The rib and stringer stiffnesses were determined from the 

equation 

K  = AE/L (B-26) 

The plate element stiffnesses were calculated from the same 

rectangular plate stiffness matrix used in DORA.  The 8x8 

singular stiffness matrix was reduced to a 5x5 nonsingular matrix 

by striking out the rows and columns corresponding to the con- 

straints shown in the sketch above.  The plate flexibility matrices 

used in the force analysis were obtained" by inverting the stiff- 

ness matrices.  The element stiffnesses are tabulated in Table 

B-3. 

The results are tabulated in Table B-3.  As in the force 

analysis, the unit internal force matrix [B] is labeled "Internal 

Forces" and the flexibility matrix [F,l is labeled "Displacements". 

Comparison of Results 

A comparison of both the "Internal Forces" and the "Displace- 

ments" calculated by the force and displacement methods shows 

that the maximum difference is one digit in the seventh significant 
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digit.  This difference can be considered to be negligible. 

A comparison of the deflections at the loads can also be 

made between the force/displacement method and the direct 

stiffness method.  Using the force method flexibility matrix, 

the displacements at the loads are 

outboard 

. inboard . 

= 10 -5 
21905393  .12551318 

12551320  ,1986546 

0.5 

0.5 

.17228355 

= 10 
.16198933 

L 

The above results agree with V,0 and V,, of Table A-2 

through the sixth significant digit.  Although the difference 

here is greater than the difference between the force and dis- 

placement method results, it is still considered negligible. 

The Matrix Force/Displacement Frogram could be easily 

modified to include three-dimensional structures.  The number 

of columns in [F ] would be increased and the procedures for the 

multiplications involving [F ] would be expanded. 

The major disadvantage of the present program is that the 

three input matrices must be determined by hand.  Preliminary 

investigation indicates that, at least for the displacement 

method, all of these matrices can be machine generated.  This 

possibility should receive additional investigation. 

„JB-J.2 



1 3 1 U 4 3       '♦ '• 

"0. 

nw ** 2 

31 

3       5 if 

? 0 —^- 

32 

2 1 

20 

2 -        2 't 
M 

»— 0 

.  

22 

r=J—*~ 

Fiaure  T-l     ~a--.'i  Clements with  Ir.Lerr.al     orcs< 

B-13 



1 —»- 

ft 

1   1 

i 

I 
Rib-Web Strinqer-^eb 

l -*- 

4 

11 

Four Panel Two Panel 

Ficure 3-2 '^s^ers  r.c   Pedundants ^o~. ."he >rc^ Anal s:'.s 

B-14 



1 .0 

,1 

1 .0 

Di s 

M 7TTnw 

1 
i .o 

l 

0 . 5 '»' 

T 
! .0 

1 

f 
1 . 0 

1 

1 : 0 

Outboard 
Load 

Inboard 
Load 

Figure B-3 External Load Systems for the Force Analysis 

B-15 



8 

^T^ 

Figure B-4  unit Displacements for the Uisrlacer.-.ent Analysis 

—. £-16      _    



C  C TABLE B-l 

MATRIX FORCE/DISPLACEMENT PROGRAM LISTING 

E.L. COOK AND G.E. LAMBERT 

THIS PROGRAM MAY BE USED TO ANAuYZE STRUCTUTES BY EITHFR THE 
MATRIX FORCE METHOD OR THE MATRIX DISPLACEMENT METHOD.  THE STRUCTURE 
."AY HAVE ANY COMBINATION OF DIFFERENT TYPES OF ELEMENTS AS LONG AS NO 
ELEMENT HAS A FLEXIBILITY OR STIFFNESS MATRIX LARGER THAN FIVE-BY-FIVE• 

OTHER RESTRICTIONS ARE- 

1. MAXIMUM NUMBER OF ELEMENTS = 55 
2. MAXIMUM NUMBER OF INTERNAL FORCES = 55 
3. MAXIMUM NUMBER OF EXTERNAL FORCES = 10 
4. MAXIMUM NUMBER OF EXTERNAL FORCES 

PLUS REDUNDANTS OR KINEMATIC DEFICIENCIES - 45 

THE INPUTS TO THE PROGRAM ARE AS FOLLOWS- 

***«##*«****  PARAMETER CARD - NUMBER OF ELEMENTS <K>, NUMBER OF 
* *  INTERNAL FORCES (L), NUMBER OF EXTERNAL FORCES (M). 
* CARD 1  *  NUMBER OF REDUNDANTS OR DEFICIENCIES (N>. NUMBER OF NON- 
* *  ZERO ELEMENTS IN BO OR AO (NZEBO). NUMBER OF NONZERO 
************  ELEMENTS IN Bl OR A! (NZTBI). AND A DESIGNATION FOR THE 

METHOD BEING USED (KK>.  FOR THE FORCE METHOD« KK= 1 , AND 
FOR THE DISPLACEMENT METHOD. KK = 2.  THESE PARAMETERS MUST Bf. IN FIXED 
POINT NOTATION (NO DECIMAL POINTS) AND MUST BC SEPARATED BY AT LEAST 
ONE BLANK. I.E.. 

12  24  2  I I  7  54  1 

************  ELEMENT FLEXIBILITIES OR STIFFNESSES - THESfc CARDS 
* *  CONTAIN THE ELEMENT FLEXIBILITIES OR STIFFNESSES IN A 
* CARDS 2  *  SPECIAL FORMAT.  EACH CARD MUST CONTAIN FIVE NUMBERS IN 
* THRU L+I *  FLOATING POINT NOTATION (DECIMAL POINTS REQUIRED).   A 
* *  TWO-FORCE MEMBER WILL HAVE A SINGLE CARD WITH FOUR ZEROS 
************      FOLLOWED BY THE FLEXIBILITY OR STIFFNESS OF THE ELEMENT- 

0.0 0.0 0.0 0.0 .66666667E-06 

A BEAM ELEMENT(SAY PINNED AT THE ENDS WITH MOMENTS AT BOTH ENDS) WILL 
HAVE TWO CARDS WITH THREE ZEROS FOLLOWED BY THE ELEMFNT FLEXIBILITY 
OR STIFFNESS. I.E.. 

0.0 0.0 0.0 .111111!lf-06 -.05555555C-06 
0.0 0.0 0.0 -.0555555-iE-06 • 1 1 ! 1 1 1 1 1 E-Or, 

AND SO ON UP TO A PLATE ELEMENT WHICH WILL HAVE FIVE CARCS CONTAINING 
AN ELFMENT FLEXIBILITY OR STIFFNFSS MATRIX OF THF FORM - 

»40000E-05 .29999E-05 .99999E-06 -.3333 3E-06 -.33333E-06 
.29999E-05 .86666E-05 .56666E-C5 ,29999i£-05 -.29999E-05 
.99999E-06 .56666E-05 .66666E-05 .2666öE-^5 -.33333E-05 
-.33333E-06 .29999E-05 .26666E-05 .39999E-05 -.19999E-05 
-.33333E-C6 -.29999E-05 -.33333E-05 -.19999£-05 .39999£-05 
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TABLE B-1 (CONTINUED) 

************ NONZERO ELEMENTS IN RO OR 40 - EACH C-F THESE CARCS CONTAINS 
* NEXT  * ONE NONZERO ELEMLNT OF SO OR AO PRECEEOED BY NUMBERS 
* NZEBO *  INDICATING THE ROW AND COLUMN IN WHICH IT APPEARS. 
* CARDS  *  THE ROW AND COLUMN ARE IN FIXED POINT NOTATION AND THE 
************  ELEMENT IS IN FLOATING POINT NOTATION,  I.E.« 

10 3 -.70710680E+01 

************    NONZERO ELEMENTS IN Bl OR Al - THESE CARDS ARE REQUIRED 
* NFXT   * ONLY FOR STATICALLY INDETERMINATE OR KINEMATICALLY 
* NZEB1  * DEFICIENT STRUCTURES.  THEY CONTAIN THE NONZERO ELEMENTS 
* CARDS  * OF Bl OR Al IN THE SAME FORMAT AS THE CARDS IN THE 
************ PRECEDING GROUP. 
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TABLE B-l  (CONTINUED) 

C      MATRIX FORCE/DISPLACEMENT PROGRAM 
C 
C      PART I - INPUT 

C 
C      E.L. COOK ANO G.E. LAMBEPT - REVISED APRIL 1966 
C 

COMMON K,L.M,N.MN,KK,FV<>35.5) »BOi (55,45) 
C 
C      READ AND PUNCH PARAMETERS 
C 

1 READ IOO.K.L.M.N.NZEBO.NZEB1.KK 
GO T0(50l.502'.KK 

501 PUNCH 301 
GO TO 50?, 

502 PUNCH 302 
503 PUNCH 300.K.L.M.N.NZEB0.NZEB1 

C 
C      READ AND PUNCH FV OR KP BY ROWS. FIVE VALUES PER CARD 
C 

GO T0(511.512).KK 
511 PUNCH 311 

GO TO 513 
512 PUNCH 312 
513 DO 2 I=!.L 

READ 101.FV<I.1).FV<I.2).FV(I.3).FV(I,4).FV(I.5) 
2 PUNCH 101 ,FV( !,1 ) ,FV( I ,2) .FV( I.3) iFV( I . 4) ,FV( 1 .5) 

C 
C      CLEAR B01 OR AO1 
C 

MN-M+N 
DO 3 I-1 .L 
DO 3 J=1«MN 

3 B01(I.J)=0.0 
C 
C     REAO AND PUNCH NONZERO ELEMENTS IN 80 OR AO 
C 

GO T0(521.522).KK 
52 1 PUNCH 32 1 

GO TO 523 
522 PUNCH 322 
523 DO 4 IA=1.NZEBO 

READ 102.I . J.B01 ( ! .J) 
4 PUNCH 102.I.J.B01(I.J) 

IF(N>14,7,530 
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C  C TABLE B-l  (CONTINUED) 

C      READ AND PUNCH NONZERO ELEMENTS IN Bl OR A". 
r 

530 GO T0(531.532>.KK 
531 PUNCH 331 

GO TO 533 
532 PUNCH 332 
533 DO 6 IA=1.NZEB1 

READ 102.I. J.B1IJ 
PU.^CH 102. I . J.Bl I J 
JM=J+M 

6 B01(I.JM)=B1IJ 
C 

7 ALINK-L!NK(1.0) 
C 

I a STOP 
C 

100 FORMATv  I5> 
101 FORMAT (5C 16. 8) 
102 F0RMAT(2i5,E16.8) 
300 FORMAT(615/) 
301 F0RMAT(26H ^ORCE METHOD - PARAMETERS/) 
302 FORMAT(33H DISPLACEMENT METHOD - PARAMETERS/) 
311 F0RMAT(22H ELEMENT FLEXIBILITIES/) 
31? F0RMAT(20H -l.EMENT STIFFNESSES/) 
321 F0RMAT(/23H NONZERO ELEMENTS IN BO/) 
322 FORMAT(/23H NONZERO ELEMENTS IN AO/) 
331 FORMAT(/23H NONZERO ELEMENTS IN Bl/) 
332 FORMAT(/23H NONZERO ELEMENTS IN Al/> 

C 
END 
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C  C TABLE B-l (CONTINUED) 

C      MATRIX ~ORCE/DISPLACEMENT PROGRAM 
C 
C      PART II - RECURSION ANALYSIS 

C 
C     E.L. COOK AND G.E. LAMBERT - REVISED JULY 1966 
C 

COMMON K,L,M,N,MN,KK,FV<55.5>.BO 1 (55.4 5) 
DIMENSION BlTFVt55'«DO 1(45) 

C 
PRINT 102 
PAUSE 

C 
DO 19 IR=1,N 

C 
C      Bl TRANSPOSE TIMES FV OR Al TRANSPOSE TIMES KP 
C 

DO 2 1 = 1 . L 
2 BITFVf I )=0.0 

J=l 
DO 15 IS=1.K 
IF(FV<J. I ) )20.5« 3 

3 J4=J+4 
DO 4 IA= I ,5 
I AJ=IA+J-1 
DO 4 JA=J.J4 

4 BlTFVt IAJ)=B1TFV( IAJ)+B01 (JA.MN) *FV(JA. I A ) 
J = J+5 
GO TO 15 

5 IF(FV<J.2)120.8.6 
6 J3=J+3 

DO 7 IA=2.5 
iAJ=IA+J-2 
DO 7 JA=J.J3 

7 BITFV: IAJ)=B1TFV( IAJ)+B3l < JA•MN)*FV(JA. I A) 

J = J + 4 

GO TO 15 
8 IF(FV(J.3) '20. 1 1 .9 
9 J2=J+2 

00 10 IA=3.5 
1 AJ =IA+J-3 
DO 10 JA=J,J2 

10 B1TFV( IAJ)=B1TFV( IAJ(+B01 (JA.MN)*FV(JA. I A) 

J = J + 3 
GO TO 15 

11 IF(FV(J.4))20,14,12 
12 J1=J+1 

DO 13 1A=4,5 
I AJ =IA+J-4 
DO 13 JA=J,J1 

13 B1TFV( IAJ)=B1TFV( IAJJ+B01 (JA.MN)*FV(JA♦ I A ) 
J = J+2 
GO TO 15 

14 BlTFV(J)=B01(J.MN!*FV(J.5) 
J = J+1 

15 CONTINUE 
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C  C TABLE B-l  (CONTINUED) 

C      CALCULATION OF DOMBlfFV TIMES BOl OR A 1 TK P T 1 MgS AO 1 ) 
DO 16 I = 1 « MN 
DOl ( I ) =0.0 
DO 16 J=l.L 

16 DOl(I)=D01(I>+BlTFV(J)*801(J*I) 
C 
C      PUNCH INTERMEDIATE OUTPUT FOR INITIAL STRAINS 
C 

IF(SENSE SWITCH 1)21.33 
21 PUNCH lOl.DOl(MN) 

DO 22 1=1.L 
22 PUNCH 101«801(I«MN> 
23 CONTINUE 

C 
C      CALCULATION OF REDUNDANTS OR DEF1CIENCI ES(STORED IN DOl) 
C 

DO 17 I=1,MN 
17 DO 1 (!)=-DO 1(1)/DO 1 (MN) 

C 
C      CALCULATION OF NEW BOl OR A01 
C 

DO 18 I=I.L 
DO 18 J=I«MN 

18 BOl ( I.J)=B01( 1.J)+BOl { I «MN)*D01 < J! 
19 MN=MN-1 

MN=M+N 
C 

C 

C 

ALINK=L1NK(1.0) 

20 STOP 

101 F0RMAT(5E16.8> 
102 FORMAT(38H TURN SWITCH I ON FOR THERMAL ANALYSIS/12H PRESS START) 

C 
END 
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C  C TABLE B-l (CONTINUED) 

C      MATRIX FORCE/DISPLACEMENT PROGRAM 
C 
C     PART III - CALCULATION OF FLEXIBILITY OR STIFFNESS MATRIX 

C 
C      E«L. COOK AND G.E. LAMBERT - REVISED APRIL 1966 
C 

COMMON K«L,M,N«MN,KK,FV(55,5)«B(55«45)»FD<10»10) 
C 
C      CALCULATION OR FV TIMES B OR KP TIMES A(STORED IN B> 
C 

MN=M+M 
M1=M+I 
DO 25 1=1.L 
DO 25 J=M1,MN 

25 B(I.J)=0.0 
DO 15 IR=1,M 
IRM=IR+M 

J=l 
DO 15 IS=1 ,K 
IF(FV<J»1)120.5.3 

3 J4=J+4 
DO 4 I A=l,5 
IAJ=IA+J-1 
DO 4 JA=J,J4 

4 B( IAJ,IRM)=8( IAJ, IRM)-t-B<JA, IR)*FV(JA, I A) 
J^J+5 
GO TO 15 

5 IF(FV(J,2))20,8,6 
6 J4=J+3 

DO 7 IA=2,5 
!AJ=IA+J-2 
DO 7 JA=J,J4 

7 B( I AJ, IRM) =B( IAJ, IRM)+B( JA, IR)*FV( J-i. I A) 
J = J + 4 
GO TO 15 

8 IF(FV(J,3) >20»1 1 ,9 
9 J4=J+2 

DO 10 IA=3,5 
IAJ=IA+J-3 
DO 10 JA=J,J4 

10 B( IAJ, IRM)=B( IAJ, IRM)+B(JA, IR)*FV(JA, I A) 
J = J+3 
GO TO 15 

11 IFCFVCJ»4))20,14,12 
12 J4=J+1 

DO 13 IA=4.5 
IAJ=IA+J-4 
DO 13 JA=J,J4 

13 B<(A-«lRM)rB(IAJ»IRM)+B(JA,IR)*FV(JA»IA) 

GO TO 15 
14 B(J,IRM)=B(J,IR)*FV(J,5> 

J = J+1 
15 CONTINUE 
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TABUE B-l (CONTINUED) 

C      CALCULATION OF FD OR KP 
Q 

DO 18 1 = 1 tM 
IM=I+M 
DO 16 J=l,M 
FD( I »J) =0.0 
DO 18 KM.L 
FD(I.J)=FD<I.J)+8(K.IM>«B(K.J> 
IF(ABS(FD(I.J))-.10**aO)17,17,l8 

17 FD(I«J)=0.0 
18 CONTINUE 

C 
ALINK=LINK(1.0) 

C 
20 STOP 

C 
END 
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C  C TABLE B-l (CONTINUED) 

C MATRIX FORCE/DISPLACEMENT PROGRAM 
C 
C PART IV - INTERNAL FORCES AND DISPLACEMENTS - DISPLACEMENT METHOD 
C **###**#***»**»♦**#**#♦*■»******#***#*#**,>■**•■»*♦#*♦»****#**♦#***###*♦* 

C 
C     E.L. COOK AND G.E. LAMBERT - REVISED APRIL 1966 
C 

COMMON K.L.M,N.MN»KK.FV<55»5>iB(55«45> »FD< 10»1Ü) 
C 

GO V0<18.600)»KK 
C 
C      INVERSION OF KF TO OBTAIN FD 
C 

600 DO 604 I = 1 ,M 
STORE = FD( I . ! .' 

FD<I • I > = 1 .0 
DO 601 U=l«M 

601 FD(I,J>= FD(I,J)/STORE 
DO 604 K - 1 ,M 
1F(K-11602.604,602 

60? STORE=FD(f, I ) 
FD(K. I )=0.0 
DO 603 J=l ,M 

603 FD(K«J)=FD(K«J)-STORE*FD(I . J> 
6C4 CONTINUE 

C 
C      CALCULATION OF B 
C 

DO 11 1 = 1 .L 
DO 4 1 J=l«M 
BCI.J)=0.0 
DO 41 K=1.M 
IM=K+M 

41 B(I,J)=B(I.J)+B(I.IM)*FD(K,J) 
C 

C 
18 ALINK=LINK(1»0) 

END 
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c  C TABLE B-l (CONTINUED) 

C      MATRIX FORCE/DISPLACEMENT PROGRAM 
C 
C      PART V - INTERNAL FORCES AND DISPLACEMENTS - OUTPUT 
c #♦#*###**»#♦#**##**#***♦#*#*«*#»♦###*##«♦#*♦###»##♦* 
C 
C     E.L. COOK AND G.E. LAMBERT - REVISED APRIL 1966 
C 

COMMON K,L,M,N,MN.KK,FV(55»5) »8(55.45).FD( 10t10) 
n 

C      INTERNAL FORCES 
C 

PUNCH 401 
GO T0(611.621,631»641,651),M 

611 DO 612 1=1,L 
612 PUNCH 400>8(I♦1) 

GO TO 700 
62 1 DO 622 1=1»L 
622 PUNCH 400.B(I.1),B(I.2) 

GO TO 700 
631 00 632 1=1,L 
632 PUNCH 400.3(I»1>,B(I,2)»B(1.3) 

GO TO 700 
641 DO 642 1=1,L 
642 PUNCH 400«B( I.1 >«B( 1 .2),B( I ,3)<B( I »4) 

GO TO 700 
651 DO 652 1=1»L 
652 PUNCH 400.B(I«1)»B(I,2)»B(I,3)»B(I»4),B(I,5) 

C 
C      DISPLACEMENTS 
C 

700 PUNCH 402 
GO TO ( 7 1 1 , 72 1 . 73 1 . 74 1 . 75 1 > « M 

711 DO 712 1 = 1 . M 
712 PUNCH 400»FD(I.l) 

GO TO 800 
721 DO 722 1=1.M 
722 PUNCH 400»FD(I.1).FD(I.2) 

GO TO 800 
731 DO 732 1 = 1 .M 
732 PUNCH 400,FD(I.1)»FD(I.2>«FD(I»3> 

GO TO eoo 
74 1 DO 742 I=1.M 
742 PUNCH 400.FD(I.1),FD(I«2)«FD(I»3).FD(I.4> 

GO TO 800 
751 DO 752 1 = 1 »M 
-J<=,?   PUNJrw 4üOr*rD( 1 :!: :FD! I-2) .FD! I .3/»FD( i .4 ) ,FD> i .5» 

c 
800 ALINK=LINK(1.0) 

C 
400 F0RMAT(5E16.8> 
401 FORMATC/I6H INTERNAL FORCES/) 
402 F0RMAT(/14H DISPLACEMENTS/) 

C 
END 



C  C TABLE B-l  (CONTINUED) 

C      MATRIX FORCE/DISPLACEMENT PROGRAM 
C 
C      PART VI - INITIAL FORCES 
C *****#***#**#****#*******#* 

C 
C      E.L. COOK - JULY 1966 
C 

COMMON K»L.M.N 
DIMENSION BH(55»55>«Bl(55) 

C 
DO 10 I = It L 
DO 10 J=1«L 

10 8H(I.J)=0.0 
DO 14 I As 1 ,N 
READ 1Ol,Dl! 
DO 12 J=l .L 

12 READ 101.Bl(J) 
DO 14 1=1.L 
DO 14 J=l,L 

14 BH(I,J)=BH(I,J)-B1(I )* B1(J >/O1 1 
DO 16 1 = 1 «L 
DO 16 J=1.L 

16 PUNCH 101»BH(I♦J) 

101 F0RMAT(5E16.8) 

END 

C 

C 
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-  c TABLE B-2 

FORCE ANALYSIS - PANEL CONFIGURATION I 

FORCF METHOD - PARAMETERS 

20   44    2   25   10   76 

ELEMENT FLEXIBILITIES 

•OOOOOOOOE-50 
•OO0O00O0F-50 
•OOOOOOOOE-50 
•00000000E-50 
.OOO00000E-50 
•OOOCOOOOE-50 
•OOOOOOOOE-50 
.OOOOOOOOE-50 
•OOOOOOOOE-50 
.OOOOOOOOE-50 
•OOOOOOOOE-50 
•OOOOOOOOE-50 
•OOOOOOOOE-50 
«OOOOOOOOE-50 
.17438655E-05 
.50000000E-C6 
.12438654E-05 
•31600000E-06 
•31600000E-06 
.9I097958E-06 
.24999967E-06 
•66097930E-06 
.31599989E-06 
.31599999E-06 
• 1 7438655E-05 
.50000000E-06 
. 12438654E-05 
•31600000E-06 
•3I600000E-06 
.9 1097958E-06 
„24999967E-06 
.66097930E-06 
•31599989E-06 
.31599999E-06 
eI7438655E-05 
•50000000E-06 
«12438654E-05 
. ? ; Anonof">E-06 
•3S600000E-06 
.91097958F-06 
•24999967E-06 
.66097930E-06 
.31599989E-06 
•31599999E-06 

.OOOOOOOOE -50 .OOOOOOOOE -50 

.OOOOOOOOE -50 .OOOOOOOOE -50 

.OOOOOOOOE -50 .OOOOOOOOE -50 

.OOOOOOOOE -50 .OOOOOOOOE -50 

.OOOOOOOOE' -50 «OOOOOOOOE -50 
•OOOOOOOOE' -50 .OOOOOOOOE' -50 
.OOOOOOOOE- -50 .OOOOOOOOE' -50 
.oirooOOOE- -50 .OOOOOOOOE- -50 
- wOOOOOOE- -50 .OOOOOOOOE- -50 
.wuOOOOOOE- -50 .OOOOOOOOE- -50 
.OOOOOOOOE- -50 .OOOOOOOOE- -50 
.OOOOOOOOE- -50 .OOOOOOOOE- -5C 
.OOOOOOOOE- -50 •OOOOOOOOE- -50 
.OOOOOOOOE- -50 .OOOOOOOOE- -50 
.50000000E- -06 .12438654E- -05 
. 14ee7080E- -04 .14387081E- -04 
.14387081E- -04 .15630947E- -04 
.48775398E- -05 .45615403E- -05 

-.42455399E- -05 -.45615405E- -05 
.24999967E- -06 »66097930E- -06 
•J7481823E- -04 .37231824E- -04 
.37231824E- -04 .37892806E- -04 
•69919585E- -05 .66759589E- -05 

-.63599639E- -05 -.66759643E- -05 
.50000000E- -06 .12438654E- ■05 
.14887080E- -04 .14337081E- -04 
.14387081E- -04 .I5630947E- -04 
•48775398E- •05 .45615403E- -05 

-.424S5399E- -05 -.45615405E- ■05 
•24999967E- •06 .66097930E- ■06 
•37481823E- ■04 .37231824E- •04 
.372""824E- ■04 .37892806E- ■04 
.699 15585E- ■05 .66759589E- ■05 

-.63599639E- ■05 -.66759643E- •05 
•50000000E- •06 .I2438654E- ■05 
.14887080E- •04 .14387081E- ■04 
.14387Ü81E- •04 ,15630947E- ■04 
./lfl-77OQ0r. ,r*e= A C £.  1 cz f* C\^r- r\ rr 

-.42455399E- ■OS -.456I5505E- •05 
•24999967E- ■06 .66097930E- 06 
•37481823E- 04 .37231624E- 04 
•37231824E- ■04 .37892306E- 04 
•69919585E- 05 .66759589E- 05 

-.63599639E- 05 -.66759643E- 05 

OOOOOOOOE-50 
0000000CE-50 
00000000E-50 
00000000E-50 
OOOOOOOOE-50 
00000000E-50 
00000000E-5C 
OOOOOOOOE-50 
00000000E-50 
OOOOOOOOE-50 
OOOOOOOOE-50 
OOOOOOOOE-50 
OOOOOOOOE-50 
OOOOOOOOE-50 
3I600000E-Co 
48775398E-05 
45615403E-05 
42807699E-05 
28076989E-06 
31599989E-06 
69919585E-05 
66759589E-05 
56689901E-05 
23310084E-05 
31600000E-06 
48775398E-05 
45615403E-05 
42807699E-05 
28076989E-06 
31599989E-06 
69919585E-05 
66759589E-05 
56689901E-05 
23310084E-05 
31600000E-06 
48775398E-05 
45615403E-05 

28076989E-06 
3i599989E-06 
69919585E-05 
66759589E-05 - 
56689901E-05 
23310084E-05 

13289036E-05 
66445180E-06 
13289036E-05 
66445180E-06 
S 3289036E-05 
66445180E-06 
13289036E-05 
66445180E-06 
13289036E-05 
13289036E-05 
13289036E-00 
1 3289036E-0'-. 
13289036E-05 
13289036E-05 
31600000E-06 
42455399E-05 
456 15405E-05 
28076989E-06 
42807699E-01: 
31599999E-06 
63599639E-05 
66759643E-05 
23310084E-05 
56689920E-05 
31600000E-06 
42455399E-05 
45615405E-05 
28076989E-06 
42807699E-05 
31599999E-06 
63599639E-05 
66759643E-05 
23310084E-05 
56689920E-05 
3I600000E-06 
42455399E-05 
45615405E-05 

42807699E-05 
31599999E-06 
63599639E-05 
66759643E-05 
23310084E-05 
56689920E-05 
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TABLE B--! (CONTINUED) 

NONZERO ELEMENTS IN BO 

10 •10000000E 01 
12 . 10000000E 01 
37 -.50000000E 00 
38 . 10000000E 01 
40 -•50000000E 00 
41 ♦50000000E 00 
42 -.50000000E 00 
10 2 .10000000E 01 
12 2 •10000000E 01 
14 2 •10000000E 01 

NONZERO ELEMENTS IN Bl 

1 1 . '. OOOOOOOE 01 
15 1 . 1OOOOOOOE 01 
2 2 • 1OOOOOOOE 01 

20 2 .10000000E 01 
3 3 • 1OOOOOOOE 01 

25 3 .1OOOOOOOE 01 
4 4 • 1OOOOOOOE 01 

30 4 • 1OOOOOOOE 01 
5 5 • 1OOOOOOOE 01 

35 5 .1OOOOOOOE 01 
6 6 • 1OOOOOOOE 01 

40 6 .1OOOOOOOE 01 
3 7 .1OOOOOOOE 01 

16 7 .1OOOOOOOE 01 
17 7 -.10000000E 01 
4 8 c1OOOOOOOE 01 

21 8 • IOOOOOOOE 01 
22 8 -.10000000E 01 
5 9 .10000000E 01 

26 9 .1OOOOOOOE 01 
27 9 -.1OOOOOOOE 01 
6 10 .1OOOOOOOE 01 

31 10 .lOoOOOOOE 01 
32 10 -.lOoOOOOOE 01 
7 1 1 •10000000E 01 

36 1 1 .lOoOOOOOE 01 
37 1 1 -♦lOOOOOOOE 01 
6 12 .lOOOOOOOE 01 

41 12 .lOOOOOOOE 01 
42 12 -.lOOOOOOOE 01 
9 13 .lOOOOOOOE 01 

—•IOGOGGOOE 0 i 

10 14 •lOOOOOOOE 01 
?3 14 -.lOOOOOOOE 01 
1 1 15 .lOOOOOOOE 01 
28 15 -.lOOOOOOOE 01 
12 16 •lOOOOOOOE 01 
33 16 -.lOOOOOOOE 01 
13 17 .lOOOOOOOE 01 
38 17 -.lOOOOOOOE 01 
14 IS .lOOOOOOOE 01 
43 18 -.lOOOOOOOE 01 
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TABLE B-2 (CONTINUED) 

10 19 . IOOOOOOOE 01 
19 19  - . IOOOOOOOE 01 
12 20 • IOOOOOOOE 01 
29 20  - ► IOOOOOOOE 01 
14 21 »IOOOOOOOE 01 
39 21 • IOOOOOOOE 01 
17 22  - . IOOOOOOOE 01 
18 22 •20000000E 01 
19 22  - .20000000E 01 
20 22  - >IOOOOOOOE 01 
21 22 »IOOOOOOOE 01 
23 22  - .40000000E 01 
24 22   . .40000000E 01 
27 22   < >IOOOOOOOE 01 
30 22   . . IOOOOOOOE 01 
31 22  -. IOOOOOOOE 01 
27 23  -. IOOOOOOOE 01 
28 23 20000000E 01 
29 23  -. 20000000E 01 
30 23  -, IOOOOOOOE 01 
31 23   • IOOOOOOOE 01 
33 23  -. 40000000E 01 
34 23 40000000E 01 
37 23   . IOOOOOOOE 01 
40 23   i IOOOOOOOE 01 
41 23  -« IOOOOOOOE 01 
22 24 IOOOOOOOE 01 
23 24  -. 40000000E 01 
24 24 IOOOOOOOE 01 
32 24  -, IOOOOOOOE 01 
32 25   « IOOOOOOOE 01 
33 25  -. 40000000E 01 
34 25 40000000E 01 
42 25  -. IOOOOOOOE 01 
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TABLE B-2 (CONTINUED) 

INTERNAL FORCES 

.19722703E-01 

.48524270E-01 
-«578577B8E-01 
-.79863338E-01 
-.16905167E-01 
,2489A030E~01 

-.89653643E-01 
-.12518682E 00 
.U632817E 00 
.50709291E 00 
„34600593E 00 
.31A3260BE 00 
,602*6070E 00 
.12306753E 00 
„19722703E-01 

-.10884170E 00 
-.6H64867E-01 
.22368496E 00 

-.24874727E-02 
-,12i<>8229E 00 
-.33272969E-01 
.56951259E-01 
.60668359E-01 
.94713037E-01 
.50983918E-01 

-♦94638121E-01 
•-.29107679E-01 
„24 149878E 00 

-.15221922E-01 
-.32959770E-03 
-.69947840E-0I 
.52983390E-01 
.86535900E-01 
.26855220E-01 
.77732955E-01 

-.89653643E-01 
-.11659404E 00 
.39753934E 00 

-.15461664E 00 
.12340027E-01 
.81060831E-01 

-.87774645E-01 
.31549070E-01 
,00000000E-50 

DISPLACEMENTS 

«13555068E-01 
.37084025E-01 

-.6422960IE-01 
-.10437724E 00 
-»64229588E-01 
-.10437719E 00 
.13555014E-01 
* 37084137E-0 1 
.93706815E-0I 
♦53004589E 00 
•20810741E 00 
.43336064E 00 
.93706822E-01 
.53004593E 00 
• I3555068E-0 1 

-.84239114E-01 
-.55106279E-01 
.18498399E 00 
•33410857E-01 

-.10226137E 00 
-.78377421E-02 
.31159175E-01 
•64566851E-0 1 
.93285627E-01 
.20009516E-01 
•20009494E-01 
-.20009506E-01 
.70583396E-01 
.13620602E 00 
•42805897E-01 
.42805857E-01 

-.42805858E-0 1 
•58456955E-0 1 
»93285599E-0 1 

-.84239085E-0 1 
.13555014E-01 
.12579042E 00 

-.93706822E-01 
.31210171E 00 

-.78376081E-02 
-.10226128E 00 
.78939869E-0 1 
•1578524HE 00 
.00000000E-50 

.21905393E-05 

.12551320E-05 

.12551318E-05 

.19846546E-05 
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TABLE B-3 

DISPLACEMENT ANALYSIS - PANEL CONFIGURATION I 

DISPLACEMENT METHOD - PARAMETERS 

20 44 17 84 

ELEMENT STIFFNESSES 

•OOOOOOOOE-50 
.O00OO00ÜE-50 
.0C000000E-50 
.00000000E-50 
•OOOOOOOOE-50 
.OOOOOOOOE-50 
.00000000E-50 
.0O000000E-50 
.OOOOOOOOE-50 
.OOOOOOOOE-50 
.OOOOOOOOE-50 
•OOOOOOOOE-50 
.OOOOOOOOE-50 
.0O00'O00OE-50 
.80394546E 06 
.30698789E C6 
-,40197270h: 06 
.7221C67'E 04 
-.18274854E 06 
.15129061E 07 
.70096070L 06 
-.75645310E 06 
.72210671E 04 

■.18274854E 06 
.80394546E 06 
.30698789E 06 
-.40197270E 06 
.72210671E 04 
-.18274854E 06 
.15129061E 07 
.70896070E 06 
•.75645310E 06 
.72210671E 04 
-.18274854E 36 
.80394546E 06 
.30698789E 06 
•.40I97270E 06 
.72210671E 04 
-.18274854E 06 
.15129061E 07 
.70896070E 06 
•.75645310E 06 
.72210671E 04 
-.18274854E 06 

OOOOOOOOE-50 
00000000E-50 
00000000E~50 
OOOOOOOOE-50 
00000000E-50 
00000000E-50 
OOOOOOOOE-50 
OOOOOOOOE-50 
OOOOOOOOE-50 
OOOOOOOOE-50 
00CC0000E-50 
000O00O0E-50 
OOOOOOOOE-50 
00000U00E-50 
30698789E 06 
80394546E 06 
'.896066E 06 
i8274S54E 06 
72210671E 04 
70896070E 06 
15129061E 07 
14654 137E 07 
18274854E 06 
72210671E 04 
30698789E 06 
e0394546E 06 
7089606C-E 06 
18274854E 06 
72210671E 04 
70896070E 06 
1512906 IE 07 
14654 137E 07 
18274854E 06 
7221067 IE 04 
30c S789E 06 
8 0 4546E 06 
708 - ..066E 06 
18274854E 06 
72210671E 04 
70896070E 06 
15129061E 07 
14654 13"TE 07 
18274854E 06 
7221067U. 04 

cOOOOOOOOE-SO 
,00000000E-50 
• OOOOOOOOE-50 
.OOOOOOOOE-50 
•OOOOOOOOE-50 
«OOOOOOOOE-50 
,0OOOOOO0E-50 
•OOOOOOOOE-50 
•OOOOOOOOE-50 
.OOOOOOOOE-50 
.OOOOOOOOE-50 
•0000C000E-50 
.00000000E-50 
•OOOOOOOOE-50 

-.40197270E 06 
-.70896066E 06 
.80394546E 06 

-.72210671E 04 
•18274854E 06 

-.75645310E 06 
-.14654137E 07 
•15 129061E 07 

-.72210671E 04 
.18274854E 06 

-.40197270E 06 
-.70896066E 06 
.80394546E 06 

-.72210671E 04 
. 18274854E 06 

-c75645310E 06 
-.14654137E 07 
.15129061E 07 

-.72210671E 04 
.18274854E 06 

-.40197270E 06 
-.70896066E 06 
•80394546E 06 

-.72210671E 04 
•18274854E 06 

-.7564531OE 06 
-.14654137E 07 
•15129061E 07 

-.72210671E 04 
.18274854E 06 

•000C0000E-50 
,00O0O0O0E"5O 
.OOOOOOOOE-50 
.OOOOOOOOE-50 
.00000000F-50 
.00000000E-50 
.OOOOOOOOE-50 
.OOOOOOOOE-50 
»OOOOOOOOE-50 
.OOOOOOOOE-50 
•OOOOOOOOE-50 
.OOOOOOOOE-50 
.OOOOOOOOE-50 
.OOOOOOOOE-50 
.72210671E 04 

-.18274854E 06 
-.72210671E 04 
.43844839E 06 

-.160715C4E 06 
.72210671E 04 

-,18274834E 06 
-.72210671E 04 
.59916340E 06 

-.46029672E 06 
.72210671E 04 

-.18274854E 06 
-.72210671E 04 
.43844839E 06 

-.16071504E 06 
.72210671E 04 

-.18274854E 06 
-.72210671E 04 
•59916340E 06 

-.46029672E 06 
•72210671E 04 

-.18274854E 06 
-.72210671E 04 
.43844839E 06 

-.16071504E 06 
.72210671E 04 

-.18274854E 06 
-.72210671E 04 
.599J.6340E 06 

-.46029672E 06 

.75250000E 06 

.15050000E 07 
•75250000E 06 
*15050000E 07 
•75250000E 06 
.15050000E 07 
.75250000E 06 
.15050000E 07 
•75250000E 06 
•75250000E 06 
•75250000E 06 
•75250000E 06 
•75250000E 06 
•75250000E 06 

-.18274854E 06 
•72210671E 04 
•18274854E 06 

-.16071504E 06 
•43844839E 06 

-.18274854E 06 
•72210671E 04 
.18274354E 06 

-.46029672E 06 
.59916340E 06 

-.18274854E 06 
.72CM0671E 04 
. 18274854E 06 

-. 16071504E 06 
.43844839E 06 

-. 18274854E 06 
. /22I0671E 04 
•18274854E 06 

-»46029672E 06 
•59916340E 06 

-•18274854E 06 
•72210671E 04 
. 18274854E 06 

-.16071504F 06 
•43844839E 06 

-.182/4854E 06 
•72210671E 04 
•18274854E 06 

-.46029672E 06 
•59916340E 06 
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TABLE   B-3    (CONTINUED) 

NONZERO ELEMENTS IN AO 

13 1 . 10000000E 01 
38 1 ■ 10000000E 01 
14 2 . IOOOOOOOE 01 
39 2 » IOOOOOOOE 01 
43 2 • IOOOOOOOE 01 

NONZERO ELEMENTS IN Al 

1 1  -< .IOOOOOOOE 01 
15 1    < .IOOOOOOOE 01 
9 2  - .IOOOOOOOE 01 

16 2  -. »20000000E 01 
17 2  - .20000000E 01 
18 2  - >IOOOOOOOE 01 

1 3 »IOOOOOOOE 01 
2 3  - •tOOOOOOOE 01 

15 3  -. >IOOOOOOOE 01 
16 3  -. IOOOOOOOE 01 
17 3  -. IOOOOOOOE 01 
20 3   i ► IOOOOOOOE 01 
21 4   < »40000000E 01 
22 4    < 40000000E 01 
24 4  -. IOOOOOOOE 01 
3 5  -« »IOOOOOOOE 01 

16 5   . . IOOOOOOOE 01 
25 5 >IOOOOOOOE 01 
9 6   . >IOOOOOOOE 01 

1 1 6  - • IOOOOOOOE 01 
18 6 . IOOOOOOOE 01 
'c~> 6  - .20000000E 01 
27 6  -. •20000000E 01 
28 6  - >IOOOOOOOE 01 
3 7 .IOOOOOOOE 01 
4 7  - >IOOOOOOOE 01 

17 7 »IOOOOOOOE 01 
21 7 . IOOOOOOOE 01 
25 7 IOOOOOOOE 01 
26 7  - >IOOOOOOOE 01 
27 7  - . IOOOOOOOE 01 

30 7 . IOOOOOOOE 01 
10 8 . IOOOOOOOE 01 
12 8  - . IOOOOOOOE 01 
19 8 • IOOOOOOOE 01 
?1 n L!OOnOOOOE 0 ! 
26 8 >20000000E 01 
27 3 »20000000E 01 
29 8  - IOOOOOOOE 01 
31 8  -. 40000COOE 01 
32 8  -< 40000000E 01 
33 8  -. . IOOOOOOOE 01 

2" 9 .IOOOOOOOE 01 
31 9 .40000000E 01 

32 9   . 40000000E 01 
34 9  -< IOOOOOOOE Ol 
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TABLE B-3 {CONTINUED) 

5 10  - • 10000000E 01 
26 10 .10000000E 01 
35 10 .10000000E 01 
1 1 1 1 .10000000E 01 
13 1 1 •10000000E 01 
28 1 1 »IOOO0000E 01 
36 1 1 .20000000E 01 
37 1 1 »20000000E 01 
38 1 1 . 10000000E 01 
5 12 »IOOOOOOOE 01 
6 12  - »10000000E 01 

27 12 tIOOOOOOOE 01 
31 12 . 1COOO0O0E 01 
35 12  - . 1G000000E 01 
36 1?  - »10000000E 01 
3^ 12  - . 10000000E 01 
10 12 ► IOOOOOOOE 01 
12 13 , IOOOOOOOE 01 
14 13  -. . IOOOOOOOE 01 
29 13 10000000E 01 
33 13   , >IOOOOOOOE 01 
36 13   , 20000000E 01 
37 13   « 20000000E 01 
39 13  -. IOOOOOOOE 01 
41 13  -. 40000000E 01 
42 13  -. 40000000E 01 
43 13  -« IOOOOOOOE 01 
34 14   , IOOOOOOOE 01 
41 14   . 40000000E 01 
42 14   . 40000000E 01 
44 14  -. IOOOOOOOE 01 
7 15  -• IOOOOOOOE 01 

36 15 IOOOOOOOE Cl 
7 16 IOOOOOOOE 0! 
8 16  -. IOOOOOOOE 01 

37 16   . IOOOOOOOE 01 
41 16 IOOOOOOOE 01 
44 17 !OOOOOOOE 01 
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INTERNAL FORCES 

TABLE B-3 (CONTINUED) 

.19722669E-01 

.4B524245E-01 
-.57857780E-01 
-.79863380E-01 
-.16905155E-01 
.24894 110E-01 

-.89653650E-01 
-.12518663E 00 
.11632805E 00 
.50709297E 00 
»34600586E 00 
.31432610E 00 
.60246065E 00 
.12306755E 00 
.19722711E-01 

-.10884170E 00 
-.61164824E-01 
.22368487E 00 

-.24874490E-02 
-.12148231E 00 
-.33273048E-0! 
.56951298E-01 
.60668326E-01 
.94713022E-01 
.50983897E-01 

-.94638130E-01 
-.29107669E-01 
.24149880E 00 

-.15222030E-0 1 
-.32953000E-03 
-.69947790E-0 1 
.52983370E-01 
.86535826E-01 
.268S5288E-01 
.77732990E-01 

-.89653670E-01 
-.11659407E 00 
•39753937E 00 

-.15461661E 00 
.12340156E-01 
.81060900E-01 

-.87774710E-01 
.31549050E-01 

13555044E-01 
37084015E-01 
64229596E-0 1 
10437723E 00 
64229580E-0 1 
10437721E 00 
13555120E-01 
37084060E-0 1 
93706734E-0 1 
53004577E 00 
20810740E 00 
43336056E 00 
93705820E-0 1 
53004587E 00 
13555080E-0 1 
84239126E-0 1 
55106275E-01 
18498394E 00 
334 10889E-01 
10226139'E 00 
78378230E-02 
31159214E-01 
64566807E-0 1 
93285584E-0 1 
20009525E-0 1 
20009470E-01 
20009491E-0 1 
70583420E-01 
13620587E 00 
42806090E-0 1 
42806S90E-01 
42806150E-01 
58456838E-0 1 
93285660E-01 
84239030E-0 1 
13555060E-0 1 
12579024E 00 
93706730E-01 
31210163E 00 
78378750E-02 
10226148E 00 
78940080E-0 1 
15785242E 00 

01SPLACEMENTS 

.21905389E-05 

.12551316E-05 
.12551317E-05 
.19846539E-05 
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APPENDIX C 

RECURRENCE METHOD FOR INITIAL STRAINS 

Pestel and Leckie have developed the matrix force equations 

for structures with initial strains in Reference 5, Section 9-3. 

They have not, however, presented a recurrence method for solv- 

ing these equations.  The following pages present the derivation 

of such a method and an example of its use. 

The basic equations for the internal forces and the dis- 

placements in the absence of external loads are 

{p} = -[B1] [D11]~
1l31]

T{h} (C-l) 

{d} = [B]T{h} (C-2) 

where    {pi = the internal forces due to the initial strains. 

{d} = the displacements at the external load points 

due to initial strains. 

{hi = the deformations in the unassembled structure 

due to the initial strains. 

[B,] = the internal forces in the structure due to 

unit values of the redundants.  This is the 

same as the unit redundant matrix used in an 

isothermal analysis. 

[D, , J = the matrix of displacements at the redundants 

for unit values of the redundants.  This matrix 

is also used in the isothermal analysis. 

[B] = the internal forces due to unit values of the 

external forces.  This matrix is one of the 

primary results of an isothermal analysis. 

The only quantity in Equations (C-l) and (C-2) that is not 

available from an isothermal analysis, when the recurrence method 

is used, is the matrix [D,,].  This means that [D,,] must either 

be calculated for thermal analyses or that a recurrence method 

must be derived which obviates the need for [D,,].  The equa- 

tions which can be used to derive the recurrence equations are 

C-l 



{p} = [B1]{x} (C-J) 

{v} = {h} + [Fv](p) (C-4) 

[B,]T{v} = {0}     (Compatibility) (C-5) 

where     {x} = the redundants due to the initial strains, 

{v} = the deformations at the internal forces. 

[F ] = the flexibility matrix for the unassembled 

structure. 

As in the isothermal recurrence method, the n redundants are 

eliminated one at a time with n recursions.  Assume that 

Equation (C-3) can be rewritten as 

{p} - [B^Hf1} + {B*} x1 + [ß£]{h} 

For the first recursion 

{p} -- [Rj.Mf1} + (B*} -,1 + [8j]{h} (C-6) 

where    [B,. ] = first n-1 columns of actual [B,]. 0 1 

{B,} = last column of actual [B,]. 
I 

[B. ] = first approximation of initial stress matrix n 
[B. ] . n 

{f } = all redundants except the fir't one to be elimi- 

nated, 

x  = the first redundant to be eliminated, 

n  = the number of redundants. 

IB, ] = [0] since the structure is originally assumed to be 

determinate. 

Substituting Equation (C-6) in Equation (C-4) 

{V1} = {h} + [Fv] ([BJ] (f1} + IB*} x1 + [B*]{h})      (C-7) 

The relative displacement at the first redundant x can be 

eliminated by using Equation (C-7) in Equation (C-5) giving 

TT IT     I II TT 
{Bjl'lh}   +   (D^K'f    >   +   D^x1   +   <D^h^(h-   =   0 (C-8) 

where     {D^0}T =   {B*}T[Fv][BJ] 

Dll       =   {BI}X]{Bl' 
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{Dlh}T = {Bl)T[Fv][Bh] = {0}  since [Bh] = f0] 

Solving Equation (C-8) for x 

T      T T  T      1      T T 
x1 = {X1} {f } ^j-  {BJr{h} (C-9) 

Dll 

where    {XX}T = ^- {D* }T 

D Ull 
I 

The first redundant x  can now be eliminated from Equation (C-6) 

by using Equation (C-9). 

{p} = ([BQ] + {B^){XI}T){f1} -(-i_{B*}{B*}T){h}        (C-10) 
Dll 

The force equation can also be written in terms of the second 

redundant as the unknown, giving 

{p} = [Bj1]}!11} + {B^lx11 + [ß"]{h}        (C-ll) 

Comparing Equations (C-10) and (C-ll) 

[BQ
1
] = the first n-2 columns of [B*] + {B^}{XI}T 

{B*1} = the last column of [BJ] + {B^HX1}"1, 

[B^1] = - -I" {B|}{BhT h       111 
III! I 

{f  } = the"first n-2 elements of {f } 

x   = the last element of {f } 

II       II The [B~ ] and {B, } matrices are defined exactly as in a iso- 

thermal analysis with zero loads. 

The second recursion can be continued by substituting 

Equation (C-ll) in Equation (C-4). 

{v11} = {h} + [Fv] ([Bj1] {f11} + {B^lx11 + [Bj^Jfh}) (C-12) 

Now substituting Equation (C-12) in Equation (C-5) 

II T IT T  IT      TT  II      IT T 
l'B^V{h} + {D^J^f1-} + D^ x11 + {Dj^fh} = 0    (C-13) 

where  (D*J}T = {B![
I
}
T
[FV] [BJ

1
] 

^11  = {BiI}TfFv
]{BlJl 

{DiS} = (B^}T[FV)[B;
T
] 
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The  last  expression above  can be  shown  to be  zero as 

follows: 

[B0I|B]II]T[Fv][BhI] 

=    ([BJ]   +   {B^}{XI}T)T[Fv](-   -i-   :B^}{BJ}
T

) 
Dll 

'=  -[BJ]
T

[FV]{BJI  -1_ {BJ}T -  {X
I

}{B^}
T

[FV]{BJ}  -y-{B*>T 

Dll Dll 
I D 

(Dio} .{B*}
T
 -{x1} -±i (BJ}T = {X

I
}{BJ}

T
 -{X

I
HB*}

T 

D
ll D11 

= [0|0] 

Solving Equation (C-13) for x11 

x11 = {XII}T{f11} kr=~  {B,II}T{h} (C-14) 
D       l ull 

Substituting Equation (C-14) in Equation (C-ll) 

{p} = ([B*1] + (B];
I
}{X

II
}
T

) {f11} + ([B*1] l_fB^
I){B^I}T{h} 

Dll 

(C-15) 

Writing the force equation now in terms of the next redundant 

{p} = [BQ
11

] {f111} + {BJ:iI}x111 + [B*11]!!!} (C-16) 

Comparing Equations (C-15) and (C-16) 

[BJ
11

] - all but the last column of [B*1] + {B*1}{X1I}T 

{B*11} = last column of [BJ
1
] + {B*IHXII}T 
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,„111, rnII, 1      r_IIWDII,T 
[Bh   ] = [Bh ]  " -TT{Bi }{Bi ] 

Dn in ii {f   } = all but the last element of {t     } 

x    = the last element of {f  } 

The third recursion can now be continued by substituting 

Equation (C-16) in Equation (C-4) 

(v111} = (hi + [F ]([B111]{f111} + {B^II]x111 f [BI
11

]^}) v   o 1 n 

(C-17) 

Substituting Equation (C-17) in Equation (C-5) 

,_III,T,.  ,    ,    ,-111,1,-111,   ^  „III   III   ,    ,nIII,Tr.  ,        n {B,  } {h} + {D10 } {f   ) + D11 x    + {Dlh } {h} = 0 

where    (DJJ1)*« (B*11 }T [F^ [BJ11] 

DH1       = (B^J^F^Bf1) 

(C-18) 

,nIII,T   ,_III,Tr_ , mill, 
{Dlh }  = (B1  } [Fv][Bh  ] 

The last equation above can be shown to be zero as follows: 

[BJ
II

|B^
II

]
T
[FV]IBJ

II
J 

= ([BJ
11

] + {B*I}{XII}T) [FV]([B"] fT-{BiI}{BiI}T) 

Dll 

=   ([BjpT   +   {X
II

}{BJ
I

}
T

) [FV] (Bj1] ^-{B^HB*1}1) 
Dll 

=    [BjI]T[Fv][B^1]    +   {XII}{BjI}T[Fv][B^1] 

II   T II I" II   T 
-   [Bj1]i[Fv]{B^i}—jj-lB^}1 

Dll 

- {X
II

}{B"}
T

[F ]{B"}—ir-{BfI}T 

Jll 
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It has been previously shown that 

[BJ
I
|B^

I
]
T
[FV][B*

1] = 10|0] 

therefore, the first two terms in the above equation are zero, 

giving 

[B^IBJVIF.KB*
1
] 

IT T       IT  1     II T 

ii 

-{X
II

}{B"}
T
[FV] {E^J—j {BI

J
}
T 

Dll 
{D11} D11 

= -llf(E"}T - (X11}  " (B^}T 
D
ll °11 

= {XII}{B^I}T - {XI:r}{B"}T - r0|0] 

III Solving Equation (C-18) for x 

xIII = {xIII}T{fIII}  1 {BIII}T{h} (C-19) 

D Ull 

Substituting Equation (C-19) in Equation (C-16) 

{p} = ([BJ
11

] + {B"I}{X1II}T){f111} + ÜB*11] 

j_ ,RIIIWRIII,T 
III {B1  HBi  > ) <h> (C-20) 

Dll 

The recursions are continued until all redundante are 

eliminated.  For instance, if there were only three redundants, 

the next force equation would be 

(p) - [B*V)tfIV) ♦ [B*VHXIV) + (BjV!(hi (C-21) 

Since all redundants have been eliminated 

{fIV} = {XIV} = 0 (C-22) 
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Therefore 

,IViru,   /rnIII,    1  fT,III, f„III,T, {p} = [B*']{h} = ([B^  ] - -J~J  {B^  }{B*AA}x){h} 
Dll 

= (IBII] . _1_ (B^XBj1)1 - -^ (B^Hßf Vuh) 
Dll Dil 

= (-4-{BI}{BI}T"IIT{BII}{BII}T 
un un 

1  {B?:II}{B?II}T){h} (C-23) III   1 ' "   1 
11 

It can be concluded that 

n ,i, fni,T, {p}   =   (_   J     _^L_  {B^HB^}1) {h}   =   [B,]{h} (C-24) 
1 = 1 D1     ■*■   x n 

11 

where 

[Bh] = -[  -i- {BJ}{BMT (C-25) 
i=l Dn 

The means for evaluating Equation (C-25) has been incorpor- 

ated into the Matrix Force/Displacement Program (Appendix B) as 

follows: 

1. In Part II (Recursion Analysis), D,, and {B|} 

may be punched into cards during each recursion. 

2. In Part VI (Initial Forces), this intermediate 

output is reread and [B, ] is determined. 

The procedure is illustrated for the simple bar structure 

shown in Figure C-l.  The results are shown in Table C-l.  The 

"Internal Forces" in the table are the unit load matrix [B] and 

can be used in Equation (C-2) to obtain the thermal displace- 

ments at the load points.  The "Displacements" shown in the 

table are the isothermal flexibility matrix [F,] and cannot be 

used for thermal displacements.  The "Initial Forces" are the 

thermal unit loads [3, ] and can be used in Equation (C-24) to 

calculate the internal forces due to the initial strains. 
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As a check on the validity of the recurrance method, the 

same structure was also analyzed by the direct method.  The 

program written for the check is shown in Table C-3.  This 

program is written in 1620 Fortran II and utilizes the IBM 

System/360 Scientific Subroutine Package.  The two special 

subroutines NOZERO and MATPCH are listed.  The remaining ones 

were taken directly from the package.  The results are shown 

in Table C-2.  All of the forces and displacements agree to 

six significant figures. 

The test panel was not used for this comparison because 

the dimensions in the Fortran II program could not be made 

large enough.  The Force/Displacement Program can, however, be 

used for the thermal analysis of the test panel. 

An initial stress analysis for the displacement method has 

not been incorporated into the Force/Displacement Program. 

Pestel and Leckie have derived an equation for this case 

(Reference 5, p. 314) and the displacement analogy of Equation 

(C-25) appears in their equation along with other known quantities 

Therefore, the Force/Displacement Program can be extended to 

include displacement thermal analyses. 
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'< 0 << 0 

l^£^^^ 

A = 0.10 in. 

E = 10 x ]06 psi 

L/AE = L x 10~6 in./lb, 

x, = 
1 ~ Pl' X2 = p3' and x3 = 

Figure c-1. Structure for Initial Strain Exampl ample 

C-9 



c  C TABLE C-1 

EXAMPLE - INITIAL STRAINS 

MATRIX FORCE/DISPLACEMENT PROGRAM 

FORCE METHOD - PARAMETERS 

5    5    2    3    2    9 

ELEMENT FLEXIBILITIES 

•00000000E-50 
.00000000E-50 
•OOOOOOOOE-50 
•O0OOOOO0E-50 
.OOOOOOOOE-50 

.00000000E-50 
•OOOOOOOOE-50 
•OOOOOOOOE-50 
•OOOOOOOOE-50 
•OOOOOOOOE-50 

•OOOOOOOOE-50 
•00000000E-50 
•OOOOOOOOE-50 
•00000000E-50 
•OOOOOOOOE-50 

•00000000E-50 
•OOOOOOOOE-50 
.00000000E-50 
•OOOOOOOOE-50 
•OOOOOOOOE-50 

•50000000E-04 
•a0000000E-04 
•50000000E-04 
•30000000E-04 
•50000000E-04 

NONZERO ELEMENTS IN BO 

2 1   »lOOOOOOOE 0! 
4 2  -.lOOOOOOOE 01 

NONZERO ELEMENTS IN 81 

1 1 •10000000E 01 
2 1 -•80000000c 00 
4 1 •60000000E 00 
2 2 -•eoooooooE 00 
3 2 • lOOOOOOOE 01 
4 2 -•60000000E 00 
2 3 •80000000E 00 
4 3 -•60000000E CO 
5 3 •lOOOOOOOE 01 

INTERNAL FORCES 

•22524931E 00 
•40503980E 00 
•29320162E 00 
•94378202E-01 

-.22524931E 00 

•17908264E 00 
-.70783641E-01 
-.26968!J72E 00 
-.62328940E 00 
-.S7908265E 00 

DISPLACEMENTS 

•1620 1592E-04  -.26313458E-05 
-•283I3459E-05   .18698682E-04 
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TABLE C-l (CONTINUED) 

5NITIAL FORCES 

ROW 1 

-.14247019E 05 
.56312329E 04 
„14549974E 04 

-.59694215E 04 
-.57529809E 04 

ROW 2 

.56312329E 04 
-.14674005E 05 
.73300406E 04 
.23594551E 04 

-.56312329E 04 
ROW 3 

.14549974E 04 

.73300406E 04 
-.12072546E 05 

ab9895242E 04 
-.14549973E 04 
ROW 4 

-.59694215E 04 
»23594551E 04 
„89895242E 04 

-•12557020E 05 
•59694213E 04 

ROW 5 

-.57529809E 04 
-,56312329E 04 
-.145«9973E 04 
.59694213E 04 

-.14247020E 05 
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TABLE C-2 

EXAMPLE - INITIAL STRAINS 

GENERAL MATRIX FORCE ANALYSIS PROGRAM 

INTERNAL. FORCES 

1 «22524929E+00 
2 »40503990E+00 
3 .29320158E+00 
4 .94378200E-01 
5 -.22524929E+00 

. 17908262E+00 
•.70783650E-0I 
•.26968568E+G0 
•.62328950E+00 
-.17908263E+00 

DISPLACEMENTS 

1 .16201592E-04 
2 -.28313463E-05 

-.28313465E-05 
. 18698683E-04 

INITIAL FORCES 

1 -.I4247016E+05 
2 .56312330E+04 
3 .14549972E+04 
4 -.59694208E-»-04 
5 -.57529805E+04 

.563I2330E+04 
-.I4874003E+05 
."73300396E+04 
.23594549E+04 

-.56312320E+04 

.14549972E+04 
o73300397E+04 

■. 12072544E + 05 
.89895230E+04 
-.14549973E+04 

-.59694208E+04 
•23594552E+04 
.89695231E+04 

-• 12557018E + 05 
«59694208E+04 

-.57529805E+04 
-.56312320E+04 
-. 14549974E+04 
.59694209E+04 

-. 14247018E+05 
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C  C TABLE C-3 

GENERAL MATRIX FORCE ANALYSIS PROGRAM LISTING 

C     GENERAL MATRIX FORCE ANALYSIS WITHOUT STORAGE COMPRESSION 
C 
C     E.L. COOK - JULY 1966 
C 
C      DIMENSIONS FV((LL+LJ/2).BO(LM)tBl<LN>,B1TFV(NL)♦ O10<NM),D11( NN ) , 
C     1LWV(N)«MWV<N) «X(NM> tBlX(LM),8(LM) .BTFV(ML)«FD(MM).B1Dl 1 I (LN), 
C     2BIT(NL)«BH(LL>.RwV(L) 

C 
C     NOTE - FV AND BO ARE STORED IN BH. THEREFORE« L MUST BE EQUAL TO 
C       OR GREATER THAN 1+2M. 
C 

DIMENSION FV< 325)t8^(50)»Bl( 125> «B1TFV( 125)»D10(10)»D11C25>« 
1LWV(5)«MWV<5> tX< 10)«B1X(50).8(50),BTFV(dO).FD(4>.B1T(125). 
2B1D1 1 I ( 125)iBH(625>«RWV(25> 

C 
EQUIVALENCE (dH< 1 > »FV( 1 ) ). (BH(352)• BO ( i ) )»<B1TFV.B|T), (3c BO)♦ 
1(B1D11 I.31 ) 

C 
C      READ NO. OF INTERNAL FORCES* EXTERNAL FORCES« AND REDUNDANTS 

1 READ 900,L«M,N 
C 
C      READ NONZERO ELEMENTS IN FV (SYMMETRIC FORM) 

CALL NOZEROIFV.L.L.1) 
C 
C     READ NONZERO ELEMENTS IN BO (GENERAL FORM) 

CALL NOZERO(BO.L.M«0) 
C 
C      READ NONZERO ELEMENTS IN Bl (GENERAL FORM) 

CALL N0ZER0(B1.L.N.O) 

C 
C      CALCULATE Bl TRANSPOSE TIMES FV 

CALL TPRD<B1«FV•B1TFV«L«N♦0,1,L) 
C 
C      CALCULATE DlO = 31 TRANSPOSE TIMES FV TIMES BO 

CALL GMPRD(B1TFV,B0.D10.N.L.M) 
C 
C      CALCULATE Oil - Bl TRANSPOSE TIMES FV TIMES Bl 

CALL GMPRDtaiTFV.Bl«Dl1«N.LtN) 
C 
C      INVERT Dl1 

CALL MINV(D11«N.DET«LWV♦MWV) 
C 
C      CALCULATE -X = DU INVERSE TIMES DlO 

CALL GMPRD(D11.Dl0.X,N.N,M) 
C 
C      CALCULATE Bl TIMES -X 

CALL GMPRDOl . X « 8 1 X »L ♦ N « M ) 
C 
C      CALCULATE AND PUNCH B =B0 - Bl<-X) 

CALL GMSUB(B0.81X->8.L»M> 
CALL MATPCH(B«L«M.0.RWV) 

C 
C     CALCULATE B TRANSPOSE TIMES FV 

CALL TPRD<8«FV.BTFV.L«M«0.1.L) 
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C  C TAELE C-3 (CONTINUED) 

C      CALCULATE AND PUNCH FD = B TRANSPOSE TIMES FV TIMES B 
CALL GMPRD(BTFV*B.FD.M.L«M> 
CALL MATPCH(FD.M.M.O.RWV) 

C 
C      CALCULATE Bl TRANSPOSE 

CALL GMTRAt  ..B1T.L.N) 
C 
C      CALCULATE Bl TIMES DU  INVERSE 

CALL TPRD<B1T.DU.BlDUI.N.LiO.O.N) 
C 
C      CALCULATE -BH = Bl TIMES DU INVERSE TIMES Bl TRANSPOSE 

CALL. GMPR0(31011I.31T.BH.L.N.L) 
C 
C      CALCULATE AND PUNCH BH = -BH(-1.0) 

CALL 3MPY<BH.-1.0.8H.L.L.0) 
CALL MATPCH(BH»L.L»0,RWV> 

GO TO 1 

900 F0RMATOI3) 

ENC 

SUBROUTINE NOZEROCA«NIM,MS) 

DIMENSION A(1) 

CALL SCLA(AiO.OtNtM.MS) 
READ 900.N0 
DO 2 IA=l.NO 
READ 900,I,J,AIJ 
CALL LOC(1.J.IR.N.M.MS) 

2 A(IR)=AIJ 

900 F0«MAT(2I3.E14.8) 
C 

RETURN 
C 

END 
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c 

c 

TABLE C-3 (CONTINUED) 

SUBROUTlNt MATPCH(A,N.M.MS.R) 

DIMENSION A<1)«R<1> 

!F(MS-2)20.10.400 
C 
C      DIAGONAL FORM 

10 PUNCH 920 
PUNCH 900.(A<!),I=l,N) 
RFTURN 

C 
C      GENERAL OR SYMMETRIC FORM 

20 IF(M-5>30«3ü,150 
C      OUTPUT IN COLUMN ^ORMAT 

30 PUNCW 920 
DO 130 1=1,N 
CALL LOC(I,1.IR1.NrM.MS) 
IF!M-1 )400.£0*40 

40 CALL L0C<I,2.IR2.N.McMS) 
IF(M-2)400.90.5C 

50 CALL L0C(I.3.IR3.N.M.MS) 
!F(M~3)400«100.60 

60 CALL LCC{I,4,IRA.N.M.MS» 
IF(M-4)400*I 10.70 

70 CALL L0C(I,5.!R5.N.M,MS> 
GO TO 120 

80 PUNCH 910.I.A(IRI) 
GO TO 130 

90 PUNCH 910.I.A(IR1).A(IR2> 
GO TO l30 

100 PUNCH 910.I.A(IR1).A(IR2).A(IR3) 
GO TO 130 

110 PUNCH 910.I»A(IRl).A(IR2>.A(IR3).A(IR4) 
GO TO 130 

120 PUNCH 910.ItAtIRl>.A(IR2).A(IR3).A(IR4).A(IR5) 
130 CONTINUE 

RETURN 
C 
C      OUTPUT IN ROW FORMAT 

150 DO 170 1 = 1 ,N 
DO 160 J=l .M 
CALL LOC(r J.IR.N.M.MS) 

160 R(J)=A(IR) 
PUNCH 920 

170 PUNCH 900. (R(-J) « J=l .M) 
RETURN 

C 

c 
900 F0RMATC5X.5E15.8) 
910 FORMAT!15.SElSod) 
920 FORMAT(1H ) 

C 
END 
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APPENDIX D 

ANALYTICAL PREDICTION OF THE TEMPERATURE 

DISTRIBUTION IN AN INTEGRALLY STIFFENED PANEL 

D.L. Hull 

This report has to do with one phase of a research project 

which is to conduct an analytical and experimental analysis of 

an integrally stiffened panel subjected to combined mechanical 

and thermal loading.  The phase to be studied here will be 

the analytical prediction of the temperature distribution which 

would result from heating the edges of a panel which is cooled 

on the upper and lower surfaces by forced convection.  The 

panel to be studied is shown in Figure D-l. 

NUMERICAL ANALYSIS 

To obtain a general idea of what the effect would be of 

changing the geometry of the panel and the values for the co- 

efficients of thermal conductivity and convective heat transfer, 

a section was taken out of the panel which was one inch in 

depth with the configuration shown in Figure D-2.  This section 

was assumed to have no heat flowing from the sides or the right 

end (center line of the plate). 

Making use of the symmetry of the panel, one-half of the 

section was divided into 26 elements and finite difference 

equations were written for the heat transfer.  These equations 

were programmed for the IBM 1620 digital computer and solved 

for the temperature distribution along the length of the section 

The program used was one which makes use of matrices for the 

solution of simultaneous equations.  The equations are of the 

form shown below for element number nnp, 

kA kA 
hAi <T. " V + TT (Ti + l " V + TT (Ti - 3 " Ti» + 

Ai (V = ° 

where:  A. is the area between adjacent elements perpendicular 

to a line drawn between the elements 
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L is the distance between the elements 

T. (i = 1 to 26) is the temperature of element i 

T^ is ambient temperature 

k  is thermal conductivity BTU/hr-°F-in. 

h is convective heat transfer coefficient 

BTU/hr-°F-in2 

substituting the geometric variables the equation becomes 

h § (T.-T^-Mlf) <§> (W-kff) (|) (T4-Tl)- |qR = 0 

Rearranging, dividing by k and setting T^ = 0 gives 

_   hß  +     ä+3BT     +     a T     +MT     =   -  ä     n 
4k        3B        4H      1        3B     2        4H     4 6k   4R 

These equations can be written in the following matrix form: 

[A] [T] = [R] 

where:  A is the temperature coefficients 

T is the temperature 

R is the applied heat 

solving for T 

[T] = [A]_1[R] 

The above equations were solved using thirteen different 

sets of variables.  One set of variables was selected as a base 

and then various variables were changed and the results compared 

with the results from the original set.  This comparison gives 

an indication of the effects of varying plate geometry and 

coefficients of thermal conductivity and convective heat transfer, 

These effects are illustrated in Figures D-3 through D-15. 

The variables used in the thirteen cases were as follows: 
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Set I Set II Set III 

H  = .875 in. H  = .875 H  = .875 

t  = .125 in. t  = .125 t  = .125 

B  = C = .6 in. B  = C = .6 B  = C = .6 

W = 3.4 in. W=3.4 W=3.4 

k  =8.0 BTU/hr-F-in. k=8.0 k=8.0 

h3 = .167 BTU/hr-F-in.
2 h3 = .167 h3 = .167 

h1 = h2=h4=0 *h2 = h4=.167 *h±  = h2=h4=.167 

hl = ° 
Set IV       Set V        Set VI Set VII 

H  = .875     *H  = .90      *H  = .750 H  = .875 

t  = .125     *t  = .10       t  = .125 t  = .125 

B=C=.6      B=C=.6      B=C=.6 B=C=.6 

W=3.4      W - "\4      w=3.4 *W=3.0 

*k =■■  6.0      k = 8.0      k  = 8.0 k  = 8.0 

h3 = .167     h3 = .167     h3 = .167 h3 = .167 

hl = h2=h4=0   hl = W°   hl = h2=h4=0   hl = h2=h4=° 

Set VIII < Set   IX Set  X Set  XI 
H     = .875 H = .875 H =   .875 H = .875 

t     = .125 t = .125 t =   .125 t = .125 

*B     = C=.750 *B = C=.50 B =  C=.60 B = C=.60 

W     = 3.4 W = 3.4 W =   3.4 W = 3.4 

k     = 8.0 k = 8.0 k =   8.0 k = 8.0 

h3   = .167 h2 
= .167 

*h3 =   .050 
*h3 

= .083 

hl   = W0 h
l 

= h2=h4=o hl = h2=h4=o hl 
= Vh4=° 

Set XII Set XIII 

H  = .875 H  = .875 

t  = .125 t  = .125 

B  = C=.60 B  = C=.60 

W  = 3.4 w  = 3.4 

k  = 8.0 k  = 8.0 

*h3 = .100 *h3 = .200 

hl = h2=h4=0 hl = h2=h4"° 

* indicates the variable which has been changed. 
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The program used for the solution of the abovre sets of 

equations made use of matrix inversion and multiplication. 

This requires a large number of storage locations in the com- 

puter and a considerable amount of computer time.  The original 

program written for this purpose had to be divided into four 

separate programs so as not to exceed the memory storage 

capacity of the 1620.  The first of these programs calculates 

the constants to be used in the second and third programs which 

calculate the non-zero elements of the coefficient matrix [A]. 

The fourth program inverts the matrix [A] and multiplies it by 

the column matrix [R] (the heat added to the panel) to obtain 

the temperatures of the twenty-six elements.  The approximate 

computer time for the four programs is shown below. 

ogram Input Calculation Print Punch 
No. Time Time Time Time 

1 1.5 min. .4 min. .05 min. 

2 1.5 min. .3 min. .4  min. 

3 1.5 min. ,3 min. .4  min. 

4 2.5 min. 

7.0 min. 

15.3 

16.3 

min. 

min. 

1 

1 

.1 min. 

.1 min. .85 min. 

This gives a total time for each run of approximately 25.25 min- 

utes for each set, or a total time of approximately 5.5 hours. 

The above two dimensional analysis gives a good indication 

of what to expect in a three dimensional analysis.  Making use 

of the fact that the panel is symmetric about the center lines 

it was decided to use only one-fourth of the panel in the three 

dimensional analysis.  As a first attempt at obtaining the 

temperature distribution for the quarter panel it was decided 

that the same system won Id be used that was used for the two 

dimensional analysis.  The quarter panel was divided into 364 

elements, these element?, were arranged in 14 sections of two 

rows each with 13 elements in each row.  This created 14 sets 

of simultaneous equations which can be solved for temperature. 

The temperatures obtained for a given section are dependent upon 

the temperatures of the adjacent sections therefore, it is 

necessary to make repeated iterations through all 14 sections 
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in order to obtain the correct temperature distribution.  It 

was found for this system that the temperatures for each 

section had to be punched out by the computer then used to 

find 14 new sets of column matrices [Rj (the heat supplied 

to each section) then these column matrices were used to solve 

for a new temperature distribution in the next iteration.  Due 

to the relative slow input/output procedure on the 1620 it 

required approximately 35 minutes for a complete iteration of 

the 364 equations and it was found after 30 iterations that it 

would take an estimated 100 iterations before the temperature 

would converge en an equilibrium set of values, the time re- 

quired for this would be excessive (approximately 50 hours) 

therefore, it was decided to use another method to solve for 

the temperature distribution. 

For the second attempt at solving for the temperature 

distribution the quarter panel was divided into 112 elements 

as shown in Figure D-16, and finite difference equations were 

written for these elements.  Since the solution of a large number 

of simultaneous equations by the matrix method was found to be 

impractical on the available 1620, the Gauss-Seidel Iteration 

method was chosen as a means of solving the equations.  Using 

this method and an IBM 1620 with 40,000 units of storage 

instead of 20,000 unit~ it was found that it required approxi- 

mately 21 seconds for each iteration.  This allows a large 

number of iterations in a relatively short time as compared to 

the method uc2d in the previous attempt.  Using this system six 

sets of variables were chosen to investigate the effects of 

changing panel geometry and the convective heat transfer co- 

efficient.  These six sets are shown below.  These six sets 

of variables required a total of 596 iterations and a total 

time of 3.6 hours. 
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Set I Set II Set III Set IV 

A = 7.70 : *A = 9.70 A = 7.70 A = 7.70 

B = 3.40 B = 3.40 B = 3.40 *B = 3.0 

C =  .30 C = .300 C = .30 C = .30 

D =  .60 D = .600 D = .60 D = .60 

E =  1.0 E - 1.0 E = 1.0 E = 1.0 

t = .125 t = .125 *t = .10 t = .125 

Q = 100. Q = 100. Q = 100. Q = 100. 

k =  8.0 k = 8.0 k = 8.0 k = 8.0 

h = .167 h = .167 h = .167 h = .167 

Set V Set VI 

A = 7.70 A = 7.70 

B = 3.40 B = 3.40 

C = .30 C = .30 

*D = .750 D = .750 

E = 1.0 E = 1.0 

t = .125 t = .125 

Q = 100. Q = 100. 

k = 8.0 k = 8.0 

h = .167 h = .083 

The results of the three dimensional analysis for Set I 

are shown pictorially in Figure D-17 and the results for all 

cases are tabulated in Table D-l. 

Using the temperatures obtained from the numerical analysis 

the problem of solving for the thermal stresses in the plate 

due to these temperature distributions will be undertaken.  After 

this problem has been solved an experiment will be set up to 

obtain the actual stresses due to a temperature gradient in the 

panel and mechanical loads applied at various points on the 

panel. 
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Figure D-3.  Temperature Distribution for Variable Set I. 
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Figure D-6.  Temperature Distribution for Variable Set IV. 
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Figure D-9.  Temperature Distribution for Variable Set VII 
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Figure D-13.  Temperature Distribution for Variable Set XI. 
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Figure D-17.  Temperature Distribution for Variable Set I 
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TABLE D-l 

Three-Dimensional Temperature Distribution 

SET I 

Columns 

ü 

Rows 

1 160.73 137.°° 106.33 Öl. 36 61.9k Jifi.20 Ji3.''9 h0.k3 
? 17Ö.1Ö 12Ö.ÖP 92.72 OÖ.70 13.01 Ii6.01 37.15 33.30 
3 IÜA.I.JL 126.71 bl.lü '^0.29 L6.20 I;].i3 32.30 2.7. -'2 
Ji 191.31 127.26 02.70 16.6Ö .'2.61 3t.2ö 29.15 2h. Ji2 
1 193.93 320.06 02,02 H.2h k0.90 36.29 27.3Ö 22.72 
6 19k.00 12Ö.li9 62.06 5)-.96 kO.33 3*.KV ^6.67 22.06 
7 19li.02 12b.55 02.69 51.6b I1O.O3 31.t-.7 2 h. 90 2J.33 
6 191. 3b 12Ö.79 Öh. 72 5Ö.06 h'V:9 36. Öl 2Ö.13 23.65 
9 löA.h 131.32 90.66 63.9'- lit .02 30.00 30.' 9 26.15 

10 179.56 139.öl 101.23 72.70 12.16 hO.10 3li.09 30.37 
11 IÖ6.3Ö 131. ''Ö 90.72 6J.91 Il6.70 30.19 30.51 2ö.h0 
12 192.09 129.21 Öh. 67 57.97 J'2.35 y .20 27.65 23.23 
13 195.21 129.27 Ö2.92 55.k9 kO.23 3h -t 6 2h. 01 21.57 
111 19' .69 129.56 02.36 1k. 61 39.35 33.05 21. 32 20.05 

3UT II 

Columns 

Rows 

3 
1* 
5 
6 
7 
ö 
9 

in 

]70.02 
IÜI.27 
190.69 
1°1.91 
19Ö.1Ö 
199.3).! 
190.37 
195.33 
lö^'.lit 
3Ö1.211 

13°.ii0 
r-^.17 
12Ü.11- 
l^rJi7 
13^.50 
Ü0.c9 
13r'.7Ji 
I10.32 
132.00 
II 1 r'r' 
J. 1    ± . ~} ^ 

11 109.32 132.10 
12 195.öl H0.6O 
13 199.23 131.26 
lfi 200.73 131.ÖO 

3 

107.5Ö 
91.70 
b'i.^9 
82.93 
Ö2.7 
d2.7ö 
Ö3.10 
ö>. .51 
90.15 

90.19 
öl*. 62 
Ö3.29 
Ö3.06 

h 

02. ob 
67.3k 
10.77 
5'-.7o 
i)i.6k 
ih..Mi 
IM. 9 b 
57.^1 
- 3.0'i 
73.-0 
"3.03 
5». 97 
Ik. b 9 
Mi .26 

1 

'2.1-5 
*l.ök 
M.!.)i2 
h0.9h 
3' .35 
3ü.öb 
3<V n 
1.1.29 
.'"..07 
-2.71 
K-.ol 
M.10 
39.03 
3b.23 

o 

Jic.32 
I.-V26 
3c.; 9 
31.90 
33.93 
33.2,0 
3 ••. ■ ^ 
3K2-- 
37.-7 
3C.7-- 
37.1. - 
3k. 93 
33.01 
32.10 

Ii3.95 
36.-3 
30.51 
27.13 
25.36 
2h.7'' 
25.1k 
2r..6k 
29.73 
3j>.b0 
2^i.r3 
2t.36 
2) 1.6I 
2}.ö2 

ho. 61 
32.21 
25. Öl 
2--5.^l 
20.06 
20.31 
20.6,9 
22.19 
21.',1 
30.12 
25.k5 
21.9h 
20.2? 
19.ko 
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TABLE  D-l   (Continued) 

SIiT  III 

Columns 

1 liili.37 li.c.oö 
2 19?.Id 136.69 
3 205.U14- 133.26 
k 211.55 133.76 
5 21k.93 13li.7k 
6 216,10 135.32 

Row     7 215.18 135J;9 
6 211.93 136.05 
9 205. 5k ll.o. Oh 

10 197.85 152.53 
11 205.95 ll,o.2ü 
12 212.99 I36./-.6 
13 216.99 13- .53 
Hi 21Ö.83 136.05 

Q^Q7      Ao'ftZ      ?5'2^ ?°'llh     ^-91      !,1J'7 
05'?2    CH'HS    fr'ü '(jJ'9    36'96    32J.5 
A9*^    ?*22    ,iu59 ^-oö    30.60   25.1,7 
82.52    5k. 29    Ii0.26 37.16    26.91    21.75 

3d.16 31..76 ' 
37.*1 33.7.1- 
38.15 33.98 
'•■0.52 35.39 

81.68 
81.76 
82.61, 
85.l|.6 
93.77 

108. ÖI- 
93.86 
85.69 
83.C2 
Ö2.27 

52.55 
52.25 
53.22 
5-. 37 
6l-.3k 
76.61 
6I1.3I 
56.2u 
53.05 
51.92 

IL5.95 
53.76 
U5.Ö0 
I1O.12 
37.W.I 
36.36 

37.76 

2k. 87 
2k. 05 
2li. 33 
25.79 
28.92 

3c-.i+l 33.27 
37.5D 28.71 
3k. 67 25.23 
32.71 23.3k 
31.72 22.I;Ö 

19.02 
19.10 
19.k3 
21.00 
21.. 56 
29./L6 
2li.39 
20.53 
lü.59 
17.77 

S&T   IV 

Columns 

Row 
6 
7 
8 
9 

10 
11 
12 
13 
Ik 

1 170.72 
2 1Ö0.01 
3 188.07 
k 192.79 
5   195.32 

196.13 

Di2.li5 
133.02 
132.2i|. 
IV*.')0 
133.86 
13k.26 

195.33    131.1.23 
192.71 
187.50 
181.02 
187.7k 
193.33 
196A2 
197.82 

13k.25 
136. V3 
HLII .hb 
136.U7 
13li.61 
131|.Ö5 
135.21 

3 

lilt.21, 
100.63 
93.63 
91.51 
90.99 
91.02 
91.52 
93.28 
Q6.8B 

109.65 
98.92 
93.39 
91.70 
91.26 

■-> 

91.^9 72.00 
78.01 -3.01 
69.67 55.öl 
66.23 52.13 

.08 
6li.59 
65.2k 
67.51 
7^ i.i. 

82*88 
73. »i0 

50.32 
l|9.7ii 
.50.25 
52.20 
tu   Ln 

63.15 
56.53 

67.39 51.ök 
65.02 1-9.61 
61n2o    liü.70 

59.0 2 
5'^. 93 
50.86 
J'7.2k 
Is 5.06 
i'i'.lö 
kli.k7 
I1.5.87 
u.V. ly 

Ii9.77 
Ii7.97 
k5.2d 
h'3J\l 
142.1,9 

5/1.32 
'i< .96 
l'O.ÖÖ 
37.29 
35.29 
3li.52 
3a. 81, 
36.33 

Ji3.62 
39.25 
35.82 
33.92 
33.06 

8 

51.17 
1J2.70 
J5.V7 
32.28 
30.3k 
29.61 
29.97 

. so 
3S.lk 
39.97 
3M.97 
31.11 
29.13 
20.27 
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TABLE D-l (Continued) 

SET V 

Columns 

2      3      k            5     6     7 6 

106.50    82.69 63.02 ho.61 I4.2.0I1 39.So 
91*. 08    69.77 53.6li k5.66 36.81 32.7k 
85.73    60.93 J'6.93 'L1.93 31.6k 27.21 
62.79    57.09 )L3.36 36.96 20.69 21-. 16 
Ö1.92    55.55 ill.' 1 37.0b 27.21 22.-k 
01.93    55.25 lU.Ok 36.22 26.50 21.09 

Row      7    199.kb    126.0t      Ö2.6C    '.'6.03 I1I.53 ^.30 26.65 22.10 
05.0I4-   56.56 U3.39 37.23 27.73 23.31 
91.52    6h.71 U7.61 30.Öl 30.11 26.07 

102.51;    73.72 53.50 39.Ö2 33.39 29.77 
91.57    6Ij..67 li7.l"6 36.55 29.90 25.09 
Ö5.19    58.ks L.3.OI 3^.56 27.19 2^.83 
62.93    55.81 I4.O.Ö5 3^.12 25.70 21.26 
62.23    5I+.Ö6 39.97 3ij .39 25.02 20.59 

1 176.77 Hi 1.19 
2 10)1.63 130.Ii5 
3 192.1b 12:.. 96 
k 196.65 126.65 
5 199.16 127.37 
6 200.07 127.79 
n 

1 199.kö 12b.06 
Ö 197.23 12Ö.Ö1 
9 : 92.7U 132.33 

10 lb7.30 lkl.85 
11 1°3.05 132.51 
12 196.06 129.27 
13 200.69 126.63 
III 202.19 128.91 

SET  VI 

ColiTinns 

6 

1 2k2.67 210.50 17^.^3 D'7.09 12k.Oh 100.25 1^1.20 96.75 
2 252.75 203.90 163.96 13li.9k Hk.55 IOILJ'5 93.2k 87.k2 
3 261.81 203.01 156.92 12- .12 106.7b 96.95 66.05 79.17 
k 267.2k 20k.Oh 15k.kli 122.01 102.kl 91*.8k 81.53 7U.29 
5 270.20 205.07 153.70 120.21 100.09 92.19 76.68 71.56 
6 271.20 205.58 153.70 119.77 99.25 91.02 77.76 70.k5 

Row      7 270.36 205.60 151j.35 120.5U 99.77 91.19 76.03 70.62 
8 267.51 205.60 15. .37 123.13 101.91 92.56 79.76 72.6k 
9 261.62 207.29 161.95 129.2k 10- .55 9lu91 83.37 77.18 

10 25k.96 213.69 171.32 137.68 112.7k 96.k3 07.97 62.62 
11 262.1k 207.14.Ö lbl.99 129.Hi 106.30 9k. 5k 63.01 76.6k 
12 268.33 206.08 15^.!i5 1^.65 101.25 91.59 78.82 71.93 
13 271.80 206.1)2 15k. 50 120.0k 98.63 69.k7 76.kl 69.2k 
11; 273.38 206.82 153.90 118.98 97.50 88.J1O 75.26 66.05 
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